About Роман Кривонос

This author has not yet filled in any details.
So far Роман Кривонос has created 190 blog entries.
20 10, 2017

Россия составит карту Вселенной

2017-10-24T15:19:42+00:00 20 10 2017|Categories: Пресса о нас|

В следующем году наша страна собирается вывести на орбиту уникальный рентгеновский телескоп, который поможет понять тайны мироздания

Леонид Ситник

Построение широкомасштабной карты Вселенной — столь амбициозно сформулирована задача астрофизической обсерватории «Спектр-Рентген-Гамма», строительство которой завершают сейчас в НПО имени Лавочкина. Запуск ее намечен на следующий год, сам проект в изначальной конфигурации задумывался еще в советский период. Один из главных вопросов, на который должен ответить «Спектр-РГ», — как проходила эволюция галактик. В случае успеха миссии Россия сможет внести существенный вклад в развитие мировой науки.

Земная атмосфера для рентгеновских лучей эквивалентна слою свинца толщиной 1 м. А для наиболее информативного мягкого рентгеновского излучения непрозрачен даже 1 см воздуха. Нам с вами повезло: смертельное излучение из космоса до поверхности планеты не доходит. А вот для астрофизиков это проблема. Ведь многие интереснейшие объекты во Вселенной, к примеру — черные дыры, лучше всего изучать именно в рентгеновском диапазоне.

На заре космической эры считалось, что космос в рентгене окажется пустым. Но позднее выяснилось, что Вселенная буквально полыхает «рентгеном». Первый обзор неба в этом диапазоне, проведенный в 1971 году американским спутником Uhuru, обнаружил 339 источников. В 1990 году немецкий спутник ROSAT чувствительностью в 1000 раз больше внес в каталог уже 113 990 объектов. А кроме того, обнаружился рентгеновский фон, которым переливается весь небосвод. Есть предположение, что значительную часть этого «шума» создает множество точечных источников. Разглядеть их в этом «тумане» поможет «Спектр-РГ».

По словам академика РАН Рашида Сюняева, научного руководителя проекта, предполагается, что «Спектр-РГ» увидит около 3 млн сверхмассивных черных дыр, которые пожирают вещество со скоростью три массы Земли в секунду, а главное — зафиксирует около 100 тыс. скоплений галактик, то есть практически все эти колоссальные образования, состоящие из десятков тысяч галактик. Эти данные позволят астрофизикам составить самую грандиозную карту из всех возможных — карту Вселенной.

Набор инструментов

Основные научные приборы «Спектра-РГ» — немецкий рентгеновский телескоп eROSITA, изготовленный Институтом внеземной физики Общества имени Макса Планка, и аналогичный российский инструмент ART-XC, созданный Институтом космических исследований (ИКИ) РАН и Российским федеральным ядерным центром (РФЯЦ) в Сарове. «Немец» — толще и основательнее, «россиянин» — тоньше и чуть длиннее. Инструменты дополняют друг друга. eROSITA работает в более мягком рентгеновском диапазоне и обладает более широким полем зрения — 1 квадратный градус, что позволит «Спектру–РГ» за первые четыре года пребывания в космосе восемь раз сделать полный обзор неба.

— Таких обсерваторий для обзора всего неба с высокими чувствительностью, угловым и энергетическим разрешением больше нет, — рассказал «Известиям» заместитель директора ИКИ, руководитель работ по полезной нагрузке Михаил Павлинский. — Наземными инструментами подменить «Спектр-РГ» полностью невозможно.

Чувствительность eROSITA в 20 раз больше, чем у телескопа ROSAT, с помощью которого был сделан предыдущий вселенский обзор. Отсюда и способность разогнать тот «туман», который наполняет современную рентгеновскую картину мира.

Что касается российского телескопа ART-XC, то при меньшем поле зрения (0,3 кв. углового градуса) и разрешении (45 секунд) он «видит» в более жестком, высокоэнергетическом диапазоне, что позволит разглядеть детали, недоступные восприятию его немецкого «коллеги». Чтобы экранировать мягкое рентгеновское излучение, достаточно листа бумаги, а вот жесткий рентген способен проникнуть сквозь облака пыли и газа, закрывающие, к примеру, центры галактик. Между тем именно в центре нашей галактики, «всего» в 8 килопарсеках от Земли, притаилась черная дыра массой 4 млн Солнц.

Оба телескопа относятся к новейшему типу — в них используются зеркала косого падения. По прямой рентгеновский луч пролетит сквозь любое зеркало. Отразить или отклонить его можно лишь подставив поверхность тяжелого металла под очень острым углом — не больше половины градуса. Поэтому рентгеновское зеркало имеет вид трубы с едва заметным сужением сложной формы, фокусирующим излучение на детектор. Для повышения эффективности используют несколько зеркал разного диаметра с общей оптической осью, которые вкладывают одно в другое. Эти пакеты-матрешки должны быть сцентрированы с точностью 1,3 микрометра, то есть 1/50 толщины человеческого волоса. В обоих телескопах «Спектра-РГ» по семь таких блоков. В немецком инструменте — по 54 зеркала в каждом блоке, в нашем — по 28.

Но почему не сделать одну систему с зеркалами большого диаметра?

— Если вы наращиваете диаметр зеркальной системы, у вас увеличивается фокусное расстояние, — объяснил Михаил Павлинский. — Американцы и европейцы сделали два аппарата — Chandra и XMM-Newton, у которых фокусное расстояние порядка 8 м, и их стоимость зашкаливает за миллиард долларов. С нашим бюджетом мы бы никогда таких приборов не сделали. Даже сейчас стоимость eROSITA составляет около €100 млн.

Дороже золота

Космическая наука — недешевое удовольствие. Немецкие зеркала, к примеру, сделаны из никеля с отражающим покрытием из золота, российские — из никель-кобальта, но с иридиевым покрытием, которое в 10 раз дороже. Такой вот проект, где золото выходит дешевле.

— Иридий более эффективен для отражения излучения больших энергий, — пояснил Михаил Павлинский. — Здесь вопрос не в стоимости материала. Толщина слоя иридия, который наносится методом напыления, составляет порядка 10 нм. Но сама технология изготовления таких зеркал очень дорогая.

Одна из сложностей связана со шлифовкой поверхности. Ведь рентгеновское излучение характеризуется не только высокой энергией, но и очень короткой длиной волны, порядка 1 ангстрема — это диаметр атома водорода. Малейший дефект поверхности приводит к рассеиванию луча, поэтому шлифуется зеркало до шероховатости не выше 4 ангстрем. При этом толщина самого зеркала — 0,2 мм. Для сравнения: шероховатость зеркала европейского инфракрасного космического телескопа Herschel не должна была превышать 300 ангстрем. На шлифовку одного рентгеновского зеркала уходит три недели. Ранее такой технологией Россия не обладала. Ее пришлось создавать с нуля специалистам РФЯЦ. Так мы стали обладателями технологии, которой владеют только отдельные страны Западной Европы, Япония, США и которую сейчас усиленно развивает Китай.

На МАКС-2017 Аэрокосмический центр Германии (DLR) показал президенту России Владимиру Путину именно модель зеркала телескопа eROSITA, желая похвастать достижениями. Аналогичный предмет для гордости есть теперь и у нас. Однако на летном экземпляре ART-XC в конце концов решили поставить американские зеркала, изготовленные в Центре космических полетов имени Маршалла (NASA).

— Саров вышел на определенный уровень, на 90% освоил технологию, осталось 10%, быть может, даже 5%, — пояснил «Известиям» ситуацию Михаил Павлинский. — Но у нас не хватало времени, и требовалось дополнительное финансирование. А когда мы говорим, что купили американские зеркала, то надо понимать, что половину зеркальных систем американцы поставили как свой вклад в проект, то есть фактически нам они обошлись в несколько раз дешевле, чем если бы мы их делали сами. Но в следующем проекте, думаем, что уже сами справимся с этой задачей.

Россия и Германия поделили небо

Михаил Павлинский утверждает, что «Спектр-РГ» остался единственным российским проектом, в котором NASA сохранило свое участие поставками оборудования. И это лишний раз подчеркивает его значение. Кстати, eROSITA, по словам Михаила Павлинского, также «напичкана американскими компонентами», но, невзирая на это, разрешение на экспорт в Россию было получено без проволочек.

Скидка на американские зеркала стала частью сделки по своеобразному «распилу» Вселенной, которую наши и немецкие ученые поделили, как Испания и Португалия земной шар в 1494 году, — по меридиану.

— Когда мы договаривались с иностранными партнерами о том, какой прок будет российскому научному сообществу от того, что мы ставим тяжелый телескоп на наш аппарат, то решили поделить небо по нулевому меридиану в галактических координатах и отдать восточную часть российским ученым, а западную часть — немецким, — рассказал Михаил Павлинский. — Каждый обрабатывает свою зону в так называемый период правообладания — как минимум год, в течение которого право первой ночи будет у российских ученых в нашей части неба, а у немцев — в своей. Но это касается только данных телескопа eROSITA. По ART-XC все данные принадлежат российским ученым, за исключением небольшого участка порядка 0,5% неба, расположенного вокруг северного полюса эклиптики. Там договорились о совместной обработке с американцами за их вклад в проект.

Задержки — ничего необычного

«Спектр-РГ» планировалось запустить на несколько лет раньше — в 2014–2015-м, затем перенесли на 2016-й, потом на 2017-й, пока не назвали актуальную дату — октябрь 2018-го. Задерживать на Земле сложные научные аппараты — общемировая традиция, желающие без труда смогут найти, сколько планируемых дат пуска было у американского телескопа James Webb (до сих пор так и не запущенного).

Основной причиной переносов запуска «Спектра-РГ» были проблемы немецких партнеров при изготовлении рентгеновского телескопа eROSITA. Его ждали в Москве еще в 2010 году, но лишь в январе 2017 года летный экземпляр уникального научного прибора оказался в распоряжении НПО Лавочкина, разработчика платформы «Навигатор», на которой строится космический аппарат.

Российский телескоп был доставлен в НПО Лавочкина в конце 2016 года. После прибытия ценной посылки из Германии руководство проекта сообщило, что теперь у них «все в сборе». Однако есть одна важная система, поставка которой не только постоянно задерживалась, но до сих пор не произошла: речь о бортовом радиокомплексе (БРК), с помощью которого будет осуществляться управление и передача научных данных на расстояние 1,5 млн км.

Чтобы не повторилась история «Фобос-Грунт»

Информацию о трудностях с БРК подтвердил «Известиям» генеральный директор НПО Лавочкина Сергей Лемешевский.

— Есть вопросы по изготовлению летного образца БРК. Мы рассматриваем варианты решения этой проблемы. С технической точки зрения все вопросы выявлены, и речь идет о необходимости согласования графика работ для устранения проблемы. Думаю, что этот вопрос не скажется на сроках запуска миссии, — отметил он.

Проблемы уходят корнями в ноябрь 2011 года, когда из-за сбоя компьютера была потеряна межпланетная станция «Фобос-Грунт». На межпланетном аппарате стоял БРК, аналогичный тому, что планировался для «Спектра-РГ», но помочь в реанимации станции он не смог. После этой досадной аварии было принято решение пересмотреть элементную базу всех систем отечественных КА для дальнего космоса, а также добиться совместимости БРК «Спектра-РГ» с зарубежными средствами дальней космической связи. За БРК для «Спектра-РГ» отвечает ОАО «Российские космические системы» (РКС), объединяющее ведущие предприятия отечественного космического приборостроения. РКС не стремится распространяться о природе возникших проблем и способах их решения. Но предположить причину задержек нетрудно — это режим санкций и ограничение доступа к электронным компонентам необходимого качества.

Не вдаваясь в подробности, это предположение подтвердила «Известиям» пресс-служба госкорпорации «Роскосмос», в которую входит РКС.

— Санкции, конечно, влияют на проекты, подразумевающие международное сотрудничество. Но поскольку в их выполнении заинтересованы все участники, выработана система, которая позволяет оптимально решать поставленные научные задачи. Практически на изменение сроков реализуемого проекта сложившаяся ситуация не повлияла, — сообщили в пресс-службе.

Представители «Роскосмоса» заверили, что БРК «Спектра-РГ» будет совместим с зарубежными средствами дальней космической связи, поскольку это международный научный проект. Как сообщили в «Роскосмосе», при создании «Спектра-РГ» были использованы иностранные комплектующие.

Руководство НПО Лавочкина утверждает, что новой задержки пуска не произойдет, поскольку испытания идут с тестовым аналогом БРК.

— Уже решены все вопросы и завершены все испытания по входному контролю телескопов. Мы приступили к сборке телескопов с фермой, по завершении этих работ начинаем комплекс разобранных (космическая платформа и ферма с телескопами отдельно друг от друга) электро-радиотехнических испытаний, — сообщил Сергей Лемешевский.

По имеющейся информации, при подготовке «Спектра-РГ» выявился еще ряд проблем, в частности с программным обеспечением, отвечающим за работу немецкого телескопа eROSITA в составе КА.

— Интеграция телескопа eROSITA с космическим аппаратом еще не проводилась, — рассказал Сергей Лемешевский. — Проблем с программным обеспечением не возникало. Если сказать точнее, немецкая сторона сразу нас предупредила, что есть отличия от согласованных интерфейсов взаимодействия телескопа eROSITA с космическим аппаратом. Это потребовало от нас доработки программного обеспечения бортового комплекса управления. Доработка завершена, и сейчас мы выходим на этап интеграции российского и немецкого телескопов с космической платформой.

Для обеспечения приема сигнала крупнейшими отечественными антеннами в Медвежьих Озерах (64 м) и Уссурийске (70 м) запуск «Спектра-РГ» возможен только в марте-апреле или в сентябре-октябре. Недавний перенос запуска с сентября на октябрь 2018 года значит, что малейшая задержка приведет к уходу старта на 2019 год.

5 10, 2017

Арина Митрофанова (Казанский федеральный университет)

2017-10-24T15:21:26+00:00 05 10 2017|Categories: Семинары отдела|

5 октября, в 15:00 в к. 539: Исследование тесных двойных систем разных типов на основе моделирования их оптического излучения

(по материалам кандидатской диссертации)

1 10, 2017

IGR J17445-2747 – еще один рентгеновский барстер в балдже Галактики

2017-10-24T15:22:57+00:00 01 10 2017|Categories: Публикации|Tags: , , |

И.А. Мереминский, С.А. Гребенев, Р.А. Сюняев

Сообщается об открытии рентгеновского всплеска I рода от слабого неотождествленного транзиентного источника галактического балджа IGR J17445-2747 телескопом JEM-X обсерватории INTEGRAL. Всплески I рода считаются связанными с термоядерными взрывами вещества, выпавшего на поверхность нейтронной звезды со слабым магнитным полем при аккреции в маломассивной двойной системе. Таким образом, данное наблюдение позволяет установить природу этого источника.

Рисунок 1: Временной профиль зарегистрированного всплеска по данным телескопа JEM-X/INTEGRAL и последующее уточнение локализации источника всплеска (IGR J17445-2747) телескопом XRT/SWIFT.

Рисунок 2: Идентификация источника рентгеновского всплеска по данным телескопа JEM-X/INTEGRAL  (a – изображение за весь сеанс наблюдений 10 апреля 2017 г., b – за время всплеска).

И.А. Мереминский, С.А. Гребенев, Р.А. Сюняев «IGR J17445-2747 – еще один рентгеновский барстер в балдже Галактики», Письма в Астрономический журнал, 2017,  т. 43, № 10, с. 727-735.

28 09, 2017

Астроархеология Сверхновых: ученые заглянули в прошлое Сверхновой Тихо Браге

2017-10-24T15:24:44+00:00 28 09 2017|Categories: Публикации|Tags: , |

Международная команда ученых из Австралии, США, Европы и России прояснила происхождение сверхновой Тихо (SN 1572). Исследование, опубликованное в журнале Nature Astronomy, опровергает общепринятую точку зрения, что вспышка этой сверхновой была связана со взрывом белого карлика, масса которого достигла предела Чандрасекара за счет аккреции вещества звезды-компаньона в тесной двойной системе.

Сверхновые типа Ia являются стандартными свечами современной наблюдательной космологии – они позволяют измерять расстояния во Вселенной на космологических масштабах. Они также играют важнейшую роль в химической эволюции галактик, являясь одним из основных поставщиков железа во Вселенной. Однако, загадка происхождения этих космических взрывов огромной энергии остается неразрешенной. Практически не вызывает сомнений, что сверхновые Ia являются результатом термоядерного взрыва углеродно-кислородного белого карлика при достижении им предела массы Чандрасекара (примерно 1.4 солнечной массы). Однако конкретный механизм, приводящий к росту массы белого карлика и его детонации неизвестен – проблема предшественников сверхновых типа Ia является одной из важнейших нерешенных загадок современной астрофизики.

Согласно двум наиболее популярным теориям, белый карлик может медленно увеличивать свою массу на протяжении многих миллионов лет за счет акреции вещества звезды-компаньона в тесной двойной системе, пока не будет достигнут предел Чандрасекара, либо же взрыв может произойти при слиянии двух белых карликов в компактной двойной системе.

Эти два сценария кардинально различаются по уровню электромагнитного излучения, производимого предшественником сверхновой на протяжении миллионов лет до взрыва. В отличие от системы двух белых карликов, излучающих «лишь» гравитационные волны, аккрецирующие белые карлики  являются мощными источниками излучения в экстремальном ультрафиолетовом и мягком рентгеновском диапазонах. Это свойство ранее уже позволило ограничить суммарный вклад аккрецирующих белых карликов в производство Сверхновых по отсутствию  ярких рентгеновских гало вокруг близлежащих галактик . Однако попытки определить происхождение отдельно взятых сверхновых путем поиска в архивных данных рентгеновского источника на месте вспышки до сих пор не увенчались успехом.

В статье, опубликованной в Nature Astronomy, предложен принципилаьно новый подход к решению этой проблемы. Излучение аккрецирующего белого карлика способно ионизовать окружающую межзвездную среду – превращать нейтральные атомы вокруг в ионы. Вокруг горячего белого карлика возникает так называемая сфера Стремгрена – область ионизованного газа, размеры которой могут достигать 10-100 парсек. После взрыва белого карлика источник ионизующего излучения исчезает, однако межзвездному газу требуется значительное время для того, чтобы снова стать нейтральным (рекомбинировать). Поэтому гигантская ионизованная туманность существует вокруг сверхновой на протяжении примерно ста тысяч лет после взрыва. Это открывает возможности для астроархеологии – возможности заглядывать в прошлое Сверхновой звезды. Ведь обнаружение даже небольших количеств нейтрального водорода вблизи сверхновой Ia позволяет ученым получить ограничения на температуру и светимость белого карлика за десятки тысяч лет до взрыва сверхновой.

445 лет назад астроном Тихо Браге обнаружил на небе новую звезду. В момент появления она былa ярче Венеры, затем на протяжении последующего года ее яркость постепенно спадала. Сегодня мы знаем, что Тихо Браге наблюдал термоядерный взрыв белого карлика – вспышку Сверхновой Ia. Благодаря ее истории и близости к Солнцу, остаток Сверхновой Тихо является одним из наиболее хорошо исследованных. В частности, мы знаем из оптических наблюдений, что в настоящее время он расширяется в практически нейтральном газе.

Таким образом, используя саму сверхновую в качестве инструмента исследования окружающего газа, ученые смогли исключить существование у сверхновой Тихо горячего и яркого предшественника – такого, который смог бы создать сферу Стремгрена размером, превышающим размер остатка вспышки в настоящее время, около 3 парсек. Полученные ограничения настолько сильны, что позволяют  ограничить не только светимость белого карлика, но и аккреционного диска вокруг него, тем самым исключая из списка возможных предшественников Сверхновой Тихо белый карлик со стационарным термоядерным горением водорода на поверхности, так и повторную Новую – два основных типа объектов в классическом аккреционном сценарии. Отсутствие сферы Стремгрена вокруг остатка вспышки Сверхновой Тихо совместимо со сценарием сливающихся белых карликов в компактной двойной системе, однако не исключает и другие, более экзотические модели.

Рентгеновское изображение остатка вспышки Сверхновой Тихо (SN 1572)

Рентгеновское изображение остатка вспышки Сверхновой Тихо (SN 1572). 

© X-ray: NASA/CXC/Rutgers/K.Eriksen et al.; Optical: DSS
Художественное изображение белого карлика, медленно увеличивающего свою массу за счет аккреции вещества звезды-компаньона в тесной двойной системе.

Художественное изображение белого карлика, медленно увеличивающего свою массу за счет аккреции вещества звезды-компаньона в тесной двойной системе.

© David A. Hardy & PPARC
Художественное изображение двух белых карликов в компактной двойной системе, сливающихся за счет излучения гравитационных волн.

Художественное изображение двух белых карликов в компактной двойной системе, сливающихся за счет излучения гравитационных волн.

© Tod Strohmayer (GSFC), CXC, NASA, Illustration: Dana Berry (CXC)

Статья в Nature Astronomy

Woods, Ghavamian, Badenes & Gilfanov “No hot and luminous progenitor for Tycho’s supernova”
Nature vol., page, 2017
, goes online 4pm London time on Sept. 25 http://dx.doi.org/10.1038/s41550-017-0263-5

22 09, 2017

академик Рашид Алиевич Сюняев вошел в список самых цитируемых ученых мира

2017-09-28T15:21:10+00:00 22 09 2017|Categories: Пресс-центр ИКИ РАН, Пресса о нас|Tags: |

Имя академика Рашида Алиевича Сюняева, главного научного сотрудника отдела астрофизики высоких энергий ИКИ РАН, вошло в список двадцати двух наиболее цитируемых исследователей 2017 года, который составляет аналитическая компания Clarivate Analytics (ранее Thomson Reuters).

Компания Clarivate Anayltics специализируется в области наукометрии и научной аналитики. Каждый год, начиная с 2002, она публикует списки наиболее высоко цитируемых исследователей в физиологии и медицине, физике, химии и экономике (выбор направлений науки совпадает со знаменитым «нобелевским» набором номинаций). В этом году в него впервые были включены российские исследователи: в области химии — Георгий Шульпин, старший научный сотрудник Института химической физики им. Н.Н. Семёнова РАН, и в области физики — Рашид Сюняев, главный научный сотрудник ИКИ РАН, директор Института астрофизики Общества им. Макса Планка (Германия), приглашенный профессор Института высших исследований в Принстоне (США). Формулировка: «за основополагающий вклад в наше понимание Вселенной, включая её происхождение, процессы образования галактик, дисковую аккрецию на черные дыры и многие другие космологические явления».

Среди результатов, полученных Р.А. Сюняевым, наиболее известны «стандартная» теория дисковой аккреции на черные дыры и нейтронные звезды (Шакура и Сюняев, 1973, 1976); формула Сюняева-Титарчука (1980) для спектра излучения, формирующегося при комптонизации низкочастотных фотонов в горячей плазме; предсказание влияния акустических волн в ранней Вселенной на угловые флуктуации реликтового излучения (акустические пики) и на пространственное распределение галактик – так называемые барионные акустические осцилляции (1970); «эффект Сюняева-Зельдовича» (1972), позволяющий использовать скопления галактик в качестве мощного инструмента наблюдательной космологии. По данным астрофизической базы данных НАСА ADS (Astrophysics Data System) на его работы в отечественных и зарубежных научных журналах сделано более 60 000 ссылок, а статья Н.И. Шакуры и Р.А. Сюняева (1973) является самой цитируемой статьей в мировой теоретической астрофизике (8 140 ссылок). Индекс Хирша равен 104.

В этом году Р.А. Сюняеву и Н.И. Шакуре была присуждена Государственная премия Российской Федерации в области науки и технологий 2016 г. за создание теории дисковой аккреции вещества на черные дыры.

Рашид Алиевич Сюняев — научный руководитель готовящейся к запуску рентгеновской орбитальной обсерватории «Спектр-Рентген-Гамма». Это крупнейший совместный проект России и Германии в области астрофизики, нацеленный на решение фундаментальных вопросов космологии: природы темной энергии и темной материи, возникновения и роста сверхмассивных черных дыр, а также поиск объектов неизвестной природы.

Список лауреатов Clarivate Analytics составляется на основе высоких показателей цитирования, а также предположений о том, какие направления исследований и работы ассоциируются с важными открытиями или позволили осуществить заметный прогресс в данной области науки и имеют шанс быть удостоенными Нобелевской премии в ближайшие годы. Обычно называется несколько кандидатур, в этом году в номинации «физика» было названо пять исследователей по трем разным направлениям.

Clarivate Analytics ведёт базы данных научных публикаций, в том числе знаменитую Web of Science, а также Cortellis, Derwent, CompuMark, MarkMonitor и Techstreet. Ранее эта компания была частью Thompson Reuters.

Clarivate Analytics: A New Class of Nobel-Worthy Scientists

Max-Planck Institute for Astrophysics: Rashid Sunyaev becomes 2017 Citation Laureate

20 09, 2017

Вспышки рентгеновского излучения сверхмассивной черной дыры и свойства молекулярных облаков

2017-10-24T15:26:52+00:00 20 09 2017|Categories: Публикации|Tags: , , |

Е.Чуразов, И.Хабибуллин, Р.Сюняев

Сверхмассивная черная дыра в центре нашей Галактики, ассоциируемая с радиоисточником Sgr A*,  могла бы быть ярчайшим рентгеновским источником на небе, однако, наблюдаемый поток излучения от нее в текущую эпоху невелик и даже во время вспышек соответствует лишь миллиардной доле эддингтоновской светимости черной дыры массой 4 миллиона масс Солнца.  Тем не менее, существуют указания на то, что гораздо более яркие вспышки имели место в ее недалеком прошлом. В частности, такой вывод можно сделать на основе рентгеновского излучения, приходящего от массивных молекулярных облаков вблизи Галактического центра, которое является «эхом»  вспышки рентгеновского излучения от черной дыры, наблюдаемом с задержкой около сотни лет, вызванной конечной скоростью распространения света между источником и «отражателем». Интенсивность отраженного сигнала при этом просто пропорциональна яркости родительской вспышки, так что наблюдения отраженного сигнала позволяют восстановить историю активности Sgr A* на масштабе нескольких сотен лет. Одна из основных трудностей такого подхода заключается в плохом знании взаимного расположения черной дыры и молекулярного облака, так как оценки расстояния до них вдоль луча зрения подвержены большой неопределенности.  В недавней серии статей (Чуразов, Хабибуллин, Сюняев, Понти 2017a,b,c), обсуждаются новые методы, позволяющие избавиться от этой неопределенности.

Главная идея базируется на наблюдаемой переменности отраженного излучения — его интенсивность заметно меняется на масштабе нескольких лет, что однозначно указывает на то, что и изначальная вспышка черной дыры  должна была быть достаточно короткой. Как следствие, отражение происходит лишь в тонком слое молекулярного газа, толщина которого не превышает несколько световых лет. Скорость распространения такого «фронта облучения» вдоль луча зрения может быть точно предсказана, и она зависит исключительно от времени, прошедшего с момента вспышки, и от расстояния от источника до облака. Вблизи источника скорость составляет половину скорости света, а на больших проекционных расстояниях неограниченно возрастает. Чтобы определить ее из данных наблюдений, достаточно предположить, что на масштабах заметно меньших, чем размер облака, флуктуации плотности имеют изотропную структуру. Другими словами, характерные размеры неоднородностей плотности одинаковы вдоль луча зрения и в направлении, перпендикулярном ему. Анализ существующих данных для наиболее яркого облака показал, что эта скорость составляет 70% от скорости света. Данное значение сразу показывает, что, с учетом положения облака на небе относительно источника Sgr А*, время, прошедшее с момента вспышки, составляет 110 лет.

Полный поток энергии, излученный сверхмассивной черной дырой в результате такой вспышки может быт оценен, если предположить, что плотность рассеивающего газа известна из наблюдений молекулярных линий. Подобные рассуждения приводят к сравнительно небольшим (для сверхмассивной черной дыры) значениям энергии порядка 1047–1048 эрг. Подобную энергию сверхмассивная черная дыра, излучающая на эддингтоновском пределе, могла бы излучить за несколько часов. Полная масса вещества, «проглоченная» черной дырой во время вспышки, сравнима с массой планеты, если аккреционный поток излучает порядка 5-10% от гравитационной энергии падающего вещества.

Уточнив таким образом параметры вспышки и измерив расстояние от Sgr A* до молекулярного облака становится возможным использовать эту информацию для диагностики структуры молекулярных облаков. Например, можно восстановить трехмерное распределение молекулярного газа на больших масштабах (см. Рис.1) или измерить статистические свойства флуктуаций плотности газа вплоть до масштабов около 0.1 пк (см. Рис.2). Кроме этого, задавшись конкретной моделью крупномасштабного распределения молекулярного газа вблизи центра Галактики, оказывается возможным получить предсказания распространения «эха» этой вспышки в ближайшие несколько сотен лет (см. Рис. 3), сравнение которой с реальными наблюдениями, в том числе поляриметрическими, позволит в будущем восстановить реальную крупномасштабную карту центральной молекулярной зоны. Наблюдения же будущими поколениями рентгеновских обсерваторий, оснащенных болометрами, позволят исследовать не только плотности, но и скорости молекулярного газа, что значительно дополнит картину как сверхзвуковых турбулентных движений внутри отдельных облаков, так и их орбитального движения в гравитационном потенциале центра Галактики.

Churazov E., Khabibullin I., Sunyaev R., Ponti G. «Not that long time ago in the nearest galaxy: 3D slice of molecular gas revealed by a 110 yr old flare of Sgr A*», 2017,  Monthly Notices of the Royal Astronomical Society,  465,  45. http://adsabs.harvard.edu/abs/2017MNRAS.465…45C

Churazov E., Khabibullin I., Ponti G., Sunyaev R. «Polarization and long-term variability of Sgr A* X-ray echo», 2017,  Monthly Notices of the Royal Astronomical Society,  468,  165. http://adsabs.harvard.edu/abs/2017MNRAS.468..165C

Churazov E., Khabibullin I., Sunyaev R., Ponti G. «Can Sgr A* flares reveal the molecular gas density PDF?», 2017,  Monthly Notices of the Royal Astronomical Society,  471,  3293, http://adsabs.harvard.edu/abs/2017MNRAS.471.3293C

Трехмерное распределение плотности молекулярного газа, полученное на основе рентгеновских наблюдений.

Рис.1 Трехмерное распределение плотности молекулярного газа, полученное на основе рентгеновских наблюдений.

Доля объема, занятая газом с данной плотностью (на масштабах порядка 0.2 пк). Существующие данные пока не позволяют надежно измерить форму этого распределения, но есть надежда провести необходимые наблюдения в ближайшем будущем.

Рис.2 Доля объема, занятая газом с данной плотностью (на масштабах порядка 0.2 пк). Существующие данные пока не позволяют надежно измерить форму этого распределения, но есть надежда провести необходимые наблюдения в ближайшем будущем.

Рис.3 Моделирование распространения вспышки по молекулярному газу. По мере распространения «фронта облучения» одни облака «гаснут», тогда как другие становятся яркими. В рамках этой модели рентгеновское излучение остается видимым в течение 500 лет после вспышки.

15 09, 2017

Иван Человеков и Сергей Гребенев (ИКИ РАН)

2017-10-24T15:27:21+00:00 15 09 2017|Categories: Семинары отдела|

15 сентября, в 15:00 в к. 539

Иван Человеков: «Рентгеновские всплески, зарегистрированные телескопом JEM-X обсерватории INTEGRAL»

Сергей Гребенев: «Кратные рентгеновские всплески и модель ‘слоя растекания’ вещества по поверхности нейтронной звезды»

5 08, 2017

Использование оппозитных радиаторов для термостабилизации рентгеновских детекторов монитора всего неба, предназначенного для установки на МКС.

2017-10-24T15:28:24+00:00 05 08 2017|Categories: Публикации|Tags: , , |

Сербинов Д.В., Семена Н.П., Павлинский М.Н.

→ Общая формулировка научной проблемы и ее актуальность

В 1962 году было сделано одно из важнейших открытий в области рентгеновской астрономии – открыт космический рентгеновский фон Вселенной. С тех пор космический рентгеновский фон (КРФ) исследовали многие орбитальные астрофизические обсерватории. Было доказано, что КРФ складывается из излучения большого количества дискретных источников, при этом подавляющее большинство этих источников являются активными ядрами галактик – аккрецирующими сверхмассивными черными дырами. Таким образом, исследование КРФ позволяет изучать историю сверхмассивных черных дыр во Вселенной, а в конечном итоге и историю эволюции самой Вселенной.

Измеряемой характеристикой КРФ является его поверхностная яркость. В настоящее время полученные значения поверхностной яркости КРФ отличаются на    10 – 15 %, и эта неопределенность является весьма существенной. Поэтому повышение точности измерения поверхностной яркости КРФ является очень актуальной астрофизической проблемой.

Международная космическая станция является перспективной площадкой для измерения КРФ с высокой точностью, поскольку основная часть ее орбиты находится в зоне благоприятных радиационных условий под радиационными поясами Земли. При этом необходимым условием высокоточного измерения КРФ является поддержание стабильной температуры регистрирующих КРФ полупроводниковых детекторов в течение нескольких лет. Это является сложной проблемой для приборов, установленных на внешней поверхности МКС из-за чрезвычайно переменных внешних тепловых условий. В данной работе представлен метод термостабилизации рентгеновских детекторов при высокой переменности внешних тепловых условий, позволяющий использовать МКС как площадку для измерения КРФ.

→ Конкретная решаемая в работе задача и ее значение

Представленная работа посвящена разрабатываемому в ИКИ РАН прибору «Монитор Всего Неба» (МВН), который предназначен для измерения поверхностной яркости КРФ с точностью ~ 1 %. Данный прибор планируется установить на внешней поверхности МКС в 2018 году. Основным инструментом МВН являются рентгеновские детекторы на основе теллурида кадмия (CdTe). Подобные детекторы применяются для космических устройств в отечественной практике впервые. Материал CdTe был выбран из-за того, что он имеет большое зарядовое число и, следовательно, большое сечение взаимодействия фотонов с этим веществом. Для уменьшение шумов до приемлемого уровня такой детектор необходимо охладить до температуры −30 °С и поддерживать эту температуру со стабильностью ±2 °С для предотвращения дрейфа коэффициента преобразования, приводящего к ухудшению энергетического разрешения детектора. Проблема поддержания температуры детекторов с такой высокой стабильностью заключается в том, что внешние тепловые условия на орбите МКС очень неблагоприятны из-за сильно переменных лучистых потоков от Солнца и Земли. Поэтому в процессе создания прибора МВН очень большое внимание было уделено разработке системы обеспечения теплового режима (СОТР).

→ Используемый подход, его новизна и оригинальность

В процессе проектирования СОТР МВН была разработана методика расчета наиболее оптимальной ориентации радиаторов и соотношения их площадей. Данный подход позволяет еще на этапе эскизного проектирования определить количество радиаторов и расположить их таким образом, чтобы минимизировать колебания температуры составных частей прибора за счет использования переменности падающих лучистых потоков. А это позволяет сэкономить на электроэнергии, которую иначе пришлось бы подавать на нагреватели или термоэлектрические охладители для поддержания стабильной температуры детекторов. 

→ Полученные результаты и их значимость

В результате данной работы была создана уникальная система обеспечения теплового режима, которая основана на двух оппозитно расположенных радиаторах, соединенных U-образными тепловыми трубами. СОТР МВН имеет два уровня – активный (нагреватели и термоэлектрические охладители) и пассивный (радиаторы со специальным покрытием, тепловые трубы и экранно-вакуумная теплоизоляция). Эффективность данной СОТР была подтверждена тепловакуумными испытаниями прибора МВН.

→ Ссылка на публикацию:

D. V. Serbinov, N. P. Semena, and M. N. Pavlinsky Opposite Radiators Used for Thermostabilizing of X-Ray Detectors of the All-Sky Monitor to be Installed on the ISS. Journal of Engineering Thermophysics, 2017, Vol. 26, №3, pp. 366-376.

PDF