About Роман Кривонос

This author has not yet filled in any details.
So far Роман Кривонос has created 196 blog entries.
28 09, 2017

Астроархеология Сверхновых: ученые заглянули в прошлое Сверхновой Тихо Браге

2017-10-24T15:24:44+00:00 28 09 2017|Categories: Публикации|Tags: , |

Международная команда ученых из Австралии, США, Европы и России прояснила происхождение сверхновой Тихо (SN 1572). Исследование, опубликованное в журнале Nature Astronomy, опровергает общепринятую точку зрения, что вспышка этой сверхновой была связана со взрывом белого карлика, масса которого достигла предела Чандрасекара за счет аккреции вещества звезды-компаньона в тесной двойной системе.

Сверхновые типа Ia являются стандартными свечами современной наблюдательной космологии – они позволяют измерять расстояния во Вселенной на космологических масштабах. Они также играют важнейшую роль в химической эволюции галактик, являясь одним из основных поставщиков железа во Вселенной. Однако, загадка происхождения этих космических взрывов огромной энергии остается неразрешенной. Практически не вызывает сомнений, что сверхновые Ia являются результатом термоядерного взрыва углеродно-кислородного белого карлика при достижении им предела массы Чандрасекара (примерно 1.4 солнечной массы). Однако конкретный механизм, приводящий к росту массы белого карлика и его детонации неизвестен – проблема предшественников сверхновых типа Ia является одной из важнейших нерешенных загадок современной астрофизики.

Согласно двум наиболее популярным теориям, белый карлик может медленно увеличивать свою массу на протяжении многих миллионов лет за счет акреции вещества звезды-компаньона в тесной двойной системе, пока не будет достигнут предел Чандрасекара, либо же взрыв может произойти при слиянии двух белых карликов в компактной двойной системе.

Эти два сценария кардинально различаются по уровню электромагнитного излучения, производимого предшественником сверхновой на протяжении миллионов лет до взрыва. В отличие от системы двух белых карликов, излучающих «лишь» гравитационные волны, аккрецирующие белые карлики  являются мощными источниками излучения в экстремальном ультрафиолетовом и мягком рентгеновском диапазонах. Это свойство ранее уже позволило ограничить суммарный вклад аккрецирующих белых карликов в производство Сверхновых по отсутствию  ярких рентгеновских гало вокруг близлежащих галактик . Однако попытки определить происхождение отдельно взятых сверхновых путем поиска в архивных данных рентгеновского источника на месте вспышки до сих пор не увенчались успехом.

В статье, опубликованной в Nature Astronomy, предложен принципилаьно новый подход к решению этой проблемы. Излучение аккрецирующего белого карлика способно ионизовать окружающую межзвездную среду – превращать нейтральные атомы вокруг в ионы. Вокруг горячего белого карлика возникает так называемая сфера Стремгрена – область ионизованного газа, размеры которой могут достигать 10-100 парсек. После взрыва белого карлика источник ионизующего излучения исчезает, однако межзвездному газу требуется значительное время для того, чтобы снова стать нейтральным (рекомбинировать). Поэтому гигантская ионизованная туманность существует вокруг сверхновой на протяжении примерно ста тысяч лет после взрыва. Это открывает возможности для астроархеологии – возможности заглядывать в прошлое Сверхновой звезды. Ведь обнаружение даже небольших количеств нейтрального водорода вблизи сверхновой Ia позволяет ученым получить ограничения на температуру и светимость белого карлика за десятки тысяч лет до взрыва сверхновой.

445 лет назад астроном Тихо Браге обнаружил на небе новую звезду. В момент появления она былa ярче Венеры, затем на протяжении последующего года ее яркость постепенно спадала. Сегодня мы знаем, что Тихо Браге наблюдал термоядерный взрыв белого карлика – вспышку Сверхновой Ia. Благодаря ее истории и близости к Солнцу, остаток Сверхновой Тихо является одним из наиболее хорошо исследованных. В частности, мы знаем из оптических наблюдений, что в настоящее время он расширяется в практически нейтральном газе.

Таким образом, используя саму сверхновую в качестве инструмента исследования окружающего газа, ученые смогли исключить существование у сверхновой Тихо горячего и яркого предшественника – такого, который смог бы создать сферу Стремгрена размером, превышающим размер остатка вспышки в настоящее время, около 3 парсек. Полученные ограничения настолько сильны, что позволяют  ограничить не только светимость белого карлика, но и аккреционного диска вокруг него, тем самым исключая из списка возможных предшественников Сверхновой Тихо белый карлик со стационарным термоядерным горением водорода на поверхности, так и повторную Новую – два основных типа объектов в классическом аккреционном сценарии. Отсутствие сферы Стремгрена вокруг остатка вспышки Сверхновой Тихо совместимо со сценарием сливающихся белых карликов в компактной двойной системе, однако не исключает и другие, более экзотические модели.

Рентгеновское изображение остатка вспышки Сверхновой Тихо (SN 1572)

Рентгеновское изображение остатка вспышки Сверхновой Тихо (SN 1572). 

© X-ray: NASA/CXC/Rutgers/K.Eriksen et al.; Optical: DSS
Художественное изображение белого карлика, медленно увеличивающего свою массу за счет аккреции вещества звезды-компаньона в тесной двойной системе.

Художественное изображение белого карлика, медленно увеличивающего свою массу за счет аккреции вещества звезды-компаньона в тесной двойной системе.

© David A. Hardy & PPARC
Художественное изображение двух белых карликов в компактной двойной системе, сливающихся за счет излучения гравитационных волн.

Художественное изображение двух белых карликов в компактной двойной системе, сливающихся за счет излучения гравитационных волн.

© Tod Strohmayer (GSFC), CXC, NASA, Illustration: Dana Berry (CXC)

Статья в Nature Astronomy

Woods, Ghavamian, Badenes & Gilfanov “No hot and luminous progenitor for Tycho’s supernova”
Nature vol., page, 2017
, goes online 4pm London time on Sept. 25 http://dx.doi.org/10.1038/s41550-017-0263-5

22 09, 2017

академик Рашид Алиевич Сюняев вошел в список самых цитируемых ученых мира

2017-09-28T15:21:10+00:00 22 09 2017|Categories: Пресс-центр ИКИ РАН, Пресса о нас|Tags: |

Имя академика Рашида Алиевича Сюняева, главного научного сотрудника отдела астрофизики высоких энергий ИКИ РАН, вошло в список двадцати двух наиболее цитируемых исследователей 2017 года, который составляет аналитическая компания Clarivate Analytics (ранее Thomson Reuters).

Компания Clarivate Anayltics специализируется в области наукометрии и научной аналитики. Каждый год, начиная с 2002, она публикует списки наиболее высоко цитируемых исследователей в физиологии и медицине, физике, химии и экономике (выбор направлений науки совпадает со знаменитым «нобелевским» набором номинаций). В этом году в него впервые были включены российские исследователи: в области химии — Георгий Шульпин, старший научный сотрудник Института химической физики им. Н.Н. Семёнова РАН, и в области физики — Рашид Сюняев, главный научный сотрудник ИКИ РАН, директор Института астрофизики Общества им. Макса Планка (Германия), приглашенный профессор Института высших исследований в Принстоне (США). Формулировка: «за основополагающий вклад в наше понимание Вселенной, включая её происхождение, процессы образования галактик, дисковую аккрецию на черные дыры и многие другие космологические явления».

Среди результатов, полученных Р.А. Сюняевым, наиболее известны «стандартная» теория дисковой аккреции на черные дыры и нейтронные звезды (Шакура и Сюняев, 1973, 1976); формула Сюняева-Титарчука (1980) для спектра излучения, формирующегося при комптонизации низкочастотных фотонов в горячей плазме; предсказание влияния акустических волн в ранней Вселенной на угловые флуктуации реликтового излучения (акустические пики) и на пространственное распределение галактик – так называемые барионные акустические осцилляции (1970); «эффект Сюняева-Зельдовича» (1972), позволяющий использовать скопления галактик в качестве мощного инструмента наблюдательной космологии. По данным астрофизической базы данных НАСА ADS (Astrophysics Data System) на его работы в отечественных и зарубежных научных журналах сделано более 60 000 ссылок, а статья Н.И. Шакуры и Р.А. Сюняева (1973) является самой цитируемой статьей в мировой теоретической астрофизике (8 140 ссылок). Индекс Хирша равен 104.

В этом году Р.А. Сюняеву и Н.И. Шакуре была присуждена Государственная премия Российской Федерации в области науки и технологий 2016 г. за создание теории дисковой аккреции вещества на черные дыры.

Рашид Алиевич Сюняев — научный руководитель готовящейся к запуску рентгеновской орбитальной обсерватории «Спектр-Рентген-Гамма». Это крупнейший совместный проект России и Германии в области астрофизики, нацеленный на решение фундаментальных вопросов космологии: природы темной энергии и темной материи, возникновения и роста сверхмассивных черных дыр, а также поиск объектов неизвестной природы.

Список лауреатов Clarivate Analytics составляется на основе высоких показателей цитирования, а также предположений о том, какие направления исследований и работы ассоциируются с важными открытиями или позволили осуществить заметный прогресс в данной области науки и имеют шанс быть удостоенными Нобелевской премии в ближайшие годы. Обычно называется несколько кандидатур, в этом году в номинации «физика» было названо пять исследователей по трем разным направлениям.

Clarivate Analytics ведёт базы данных научных публикаций, в том числе знаменитую Web of Science, а также Cortellis, Derwent, CompuMark, MarkMonitor и Techstreet. Ранее эта компания была частью Thompson Reuters.

Clarivate Analytics: A New Class of Nobel-Worthy Scientists

Max-Planck Institute for Astrophysics: Rashid Sunyaev becomes 2017 Citation Laureate

20 09, 2017

Вспышки рентгеновского излучения сверхмассивной черной дыры и свойства молекулярных облаков

2017-10-24T15:26:52+00:00 20 09 2017|Categories: Публикации|Tags: , , |

Е.Чуразов, И.Хабибуллин, Р.Сюняев

Сверхмассивная черная дыра в центре нашей Галактики, ассоциируемая с радиоисточником Sgr A*,  могла бы быть ярчайшим рентгеновским источником на небе, однако, наблюдаемый поток излучения от нее в текущую эпоху невелик и даже во время вспышек соответствует лишь миллиардной доле эддингтоновской светимости черной дыры массой 4 миллиона масс Солнца.  Тем не менее, существуют указания на то, что гораздо более яркие вспышки имели место в ее недалеком прошлом. В частности, такой вывод можно сделать на основе рентгеновского излучения, приходящего от массивных молекулярных облаков вблизи Галактического центра, которое является «эхом»  вспышки рентгеновского излучения от черной дыры, наблюдаемом с задержкой около сотни лет, вызванной конечной скоростью распространения света между источником и «отражателем». Интенсивность отраженного сигнала при этом просто пропорциональна яркости родительской вспышки, так что наблюдения отраженного сигнала позволяют восстановить историю активности Sgr A* на масштабе нескольких сотен лет. Одна из основных трудностей такого подхода заключается в плохом знании взаимного расположения черной дыры и молекулярного облака, так как оценки расстояния до них вдоль луча зрения подвержены большой неопределенности.  В недавней серии статей (Чуразов, Хабибуллин, Сюняев, Понти 2017a,b,c), обсуждаются новые методы, позволяющие избавиться от этой неопределенности.

Главная идея базируется на наблюдаемой переменности отраженного излучения — его интенсивность заметно меняется на масштабе нескольких лет, что однозначно указывает на то, что и изначальная вспышка черной дыры  должна была быть достаточно короткой. Как следствие, отражение происходит лишь в тонком слое молекулярного газа, толщина которого не превышает несколько световых лет. Скорость распространения такого «фронта облучения» вдоль луча зрения может быть точно предсказана, и она зависит исключительно от времени, прошедшего с момента вспышки, и от расстояния от источника до облака. Вблизи источника скорость составляет половину скорости света, а на больших проекционных расстояниях неограниченно возрастает. Чтобы определить ее из данных наблюдений, достаточно предположить, что на масштабах заметно меньших, чем размер облака, флуктуации плотности имеют изотропную структуру. Другими словами, характерные размеры неоднородностей плотности одинаковы вдоль луча зрения и в направлении, перпендикулярном ему. Анализ существующих данных для наиболее яркого облака показал, что эта скорость составляет 70% от скорости света. Данное значение сразу показывает, что, с учетом положения облака на небе относительно источника Sgr А*, время, прошедшее с момента вспышки, составляет 110 лет.

Полный поток энергии, излученный сверхмассивной черной дырой в результате такой вспышки может быт оценен, если предположить, что плотность рассеивающего газа известна из наблюдений молекулярных линий. Подобные рассуждения приводят к сравнительно небольшим (для сверхмассивной черной дыры) значениям энергии порядка 1047–1048 эрг. Подобную энергию сверхмассивная черная дыра, излучающая на эддингтоновском пределе, могла бы излучить за несколько часов. Полная масса вещества, «проглоченная» черной дырой во время вспышки, сравнима с массой планеты, если аккреционный поток излучает порядка 5-10% от гравитационной энергии падающего вещества.

Уточнив таким образом параметры вспышки и измерив расстояние от Sgr A* до молекулярного облака становится возможным использовать эту информацию для диагностики структуры молекулярных облаков. Например, можно восстановить трехмерное распределение молекулярного газа на больших масштабах (см. Рис.1) или измерить статистические свойства флуктуаций плотности газа вплоть до масштабов около 0.1 пк (см. Рис.2). Кроме этого, задавшись конкретной моделью крупномасштабного распределения молекулярного газа вблизи центра Галактики, оказывается возможным получить предсказания распространения «эха» этой вспышки в ближайшие несколько сотен лет (см. Рис. 3), сравнение которой с реальными наблюдениями, в том числе поляриметрическими, позволит в будущем восстановить реальную крупномасштабную карту центральной молекулярной зоны. Наблюдения же будущими поколениями рентгеновских обсерваторий, оснащенных болометрами, позволят исследовать не только плотности, но и скорости молекулярного газа, что значительно дополнит картину как сверхзвуковых турбулентных движений внутри отдельных облаков, так и их орбитального движения в гравитационном потенциале центра Галактики.

Churazov E., Khabibullin I., Sunyaev R., Ponti G. «Not that long time ago in the nearest galaxy: 3D slice of molecular gas revealed by a 110 yr old flare of Sgr A*», 2017,  Monthly Notices of the Royal Astronomical Society,  465,  45. http://adsabs.harvard.edu/abs/2017MNRAS.465…45C

Churazov E., Khabibullin I., Ponti G., Sunyaev R. «Polarization and long-term variability of Sgr A* X-ray echo», 2017,  Monthly Notices of the Royal Astronomical Society,  468,  165. http://adsabs.harvard.edu/abs/2017MNRAS.468..165C

Churazov E., Khabibullin I., Sunyaev R., Ponti G. «Can Sgr A* flares reveal the molecular gas density PDF?», 2017,  Monthly Notices of the Royal Astronomical Society,  471,  3293, http://adsabs.harvard.edu/abs/2017MNRAS.471.3293C

Трехмерное распределение плотности молекулярного газа, полученное на основе рентгеновских наблюдений.

Рис.1 Трехмерное распределение плотности молекулярного газа, полученное на основе рентгеновских наблюдений.

Доля объема, занятая газом с данной плотностью (на масштабах порядка 0.2 пк). Существующие данные пока не позволяют надежно измерить форму этого распределения, но есть надежда провести необходимые наблюдения в ближайшем будущем.

Рис.2 Доля объема, занятая газом с данной плотностью (на масштабах порядка 0.2 пк). Существующие данные пока не позволяют надежно измерить форму этого распределения, но есть надежда провести необходимые наблюдения в ближайшем будущем.

Рис.3 Моделирование распространения вспышки по молекулярному газу. По мере распространения «фронта облучения» одни облака «гаснут», тогда как другие становятся яркими. В рамках этой модели рентгеновское излучение остается видимым в течение 500 лет после вспышки.

15 09, 2017

Иван Человеков и Сергей Гребенев (ИКИ РАН)

2018-02-01T18:17:33+00:00 15 09 2017|Categories: Семинары отдела|

Иван Человеков: «Рентгеновские всплески, зарегистрированные телескопом JEM-X обсерватории INTEGRAL»

Сергей Гребенев: «Кратные рентгеновские всплески и модель ‘слоя растекания’ вещества по поверхности нейтронной звезды»

5 08, 2017

Использование оппозитных радиаторов для термостабилизации рентгеновских детекторов монитора всего неба, предназначенного для установки на МКС.

2017-10-24T15:28:24+00:00 05 08 2017|Categories: Публикации|Tags: , , |

Сербинов Д.В., Семена Н.П., Павлинский М.Н.

→ Общая формулировка научной проблемы и ее актуальность

В 1962 году было сделано одно из важнейших открытий в области рентгеновской астрономии – открыт космический рентгеновский фон Вселенной. С тех пор космический рентгеновский фон (КРФ) исследовали многие орбитальные астрофизические обсерватории. Было доказано, что КРФ складывается из излучения большого количества дискретных источников, при этом подавляющее большинство этих источников являются активными ядрами галактик – аккрецирующими сверхмассивными черными дырами. Таким образом, исследование КРФ позволяет изучать историю сверхмассивных черных дыр во Вселенной, а в конечном итоге и историю эволюции самой Вселенной.

Измеряемой характеристикой КРФ является его поверхностная яркость. В настоящее время полученные значения поверхностной яркости КРФ отличаются на    10 – 15 %, и эта неопределенность является весьма существенной. Поэтому повышение точности измерения поверхностной яркости КРФ является очень актуальной астрофизической проблемой.

Международная космическая станция является перспективной площадкой для измерения КРФ с высокой точностью, поскольку основная часть ее орбиты находится в зоне благоприятных радиационных условий под радиационными поясами Земли. При этом необходимым условием высокоточного измерения КРФ является поддержание стабильной температуры регистрирующих КРФ полупроводниковых детекторов в течение нескольких лет. Это является сложной проблемой для приборов, установленных на внешней поверхности МКС из-за чрезвычайно переменных внешних тепловых условий. В данной работе представлен метод термостабилизации рентгеновских детекторов при высокой переменности внешних тепловых условий, позволяющий использовать МКС как площадку для измерения КРФ.

→ Конкретная решаемая в работе задача и ее значение

Представленная работа посвящена разрабатываемому в ИКИ РАН прибору «Монитор Всего Неба» (МВН), который предназначен для измерения поверхностной яркости КРФ с точностью ~ 1 %. Данный прибор планируется установить на внешней поверхности МКС в 2018 году. Основным инструментом МВН являются рентгеновские детекторы на основе теллурида кадмия (CdTe). Подобные детекторы применяются для космических устройств в отечественной практике впервые. Материал CdTe был выбран из-за того, что он имеет большое зарядовое число и, следовательно, большое сечение взаимодействия фотонов с этим веществом. Для уменьшение шумов до приемлемого уровня такой детектор необходимо охладить до температуры −30 °С и поддерживать эту температуру со стабильностью ±2 °С для предотвращения дрейфа коэффициента преобразования, приводящего к ухудшению энергетического разрешения детектора. Проблема поддержания температуры детекторов с такой высокой стабильностью заключается в том, что внешние тепловые условия на орбите МКС очень неблагоприятны из-за сильно переменных лучистых потоков от Солнца и Земли. Поэтому в процессе создания прибора МВН очень большое внимание было уделено разработке системы обеспечения теплового режима (СОТР).

→ Используемый подход, его новизна и оригинальность

В процессе проектирования СОТР МВН была разработана методика расчета наиболее оптимальной ориентации радиаторов и соотношения их площадей. Данный подход позволяет еще на этапе эскизного проектирования определить количество радиаторов и расположить их таким образом, чтобы минимизировать колебания температуры составных частей прибора за счет использования переменности падающих лучистых потоков. А это позволяет сэкономить на электроэнергии, которую иначе пришлось бы подавать на нагреватели или термоэлектрические охладители для поддержания стабильной температуры детекторов. 

→ Полученные результаты и их значимость

В результате данной работы была создана уникальная система обеспечения теплового режима, которая основана на двух оппозитно расположенных радиаторах, соединенных U-образными тепловыми трубами. СОТР МВН имеет два уровня – активный (нагреватели и термоэлектрические охладители) и пассивный (радиаторы со специальным покрытием, тепловые трубы и экранно-вакуумная теплоизоляция). Эффективность данной СОТР была подтверждена тепловакуумными испытаниями прибора МВН.

→ Ссылка на публикацию:

D. V. Serbinov, N. P. Semena, and M. N. Pavlinsky Opposite Radiators Used for Thermostabilizing of X-Ray Detectors of the All-Sky Monitor to be Installed on the ISS. Journal of Engineering Thermophysics, 2017, Vol. 26, №3, pp. 366-376.

PDF

1 08, 2017

Расширение каталога скоплений галактик обзора обсерватории им. Планка

2017-10-24T15:13:55+00:00 01 08 2017|Categories: Публикации|Tags: |

Р.А. Буренин

Представлен каталог скоплений галактик, обнаруженных на картах параметра комптонизации y обзора всего неба обсерватории им. Планка, и отождествленных при помощи данных ИК-обзора обсерватории ВАЙЗ, а также данных Слоановского обзора. Каталог включает в себя около 3000 скоплений галактик, обнаруженных по этим данным на полях Слоановского обзора. Мы ожидаем, что полнота этой выборки является высокой для скоплений галактик с массами выше M500 ≈ 3 × 10^14 Msun, расположенных на красных смещениях z < 0.7. На красных смещениях выше z ≈ 0.4 наш каталог содержит примерно на порядок больше скоплений галактик по сравнению выборкой второго каталога источников Сюняева-Зельдовича обзора обсерватории им. Планка. Этот каталог может быть использован для отождествления массивных скоплений галактик в будущих больших обзорах, таких как рентгеновский обзор всего неба обсерватории СРГ.

Письма в Астрономический журнал, т. 43, с. 559 (2017)

Расширение каталога скоплений галактик обзора обсерватории им. Планка

Затененной областью показан примерный диапазон масс и красных смещений скоплений галактик из нашего каталога. Красными точками показаны массы и красные смещения скоплений из 2-го каталога обзора обсерватории им. Планка (Сообщество Планка, 2016в). Также штриховой и сплошной линиями показаны примерные нижние пределы масс скоплений галактик, которые были (будут) достигнуты в обзорах всего неба обсерватории им. Планка и обсерватории СРГ.

PDF

21 07, 2017

Премия РАН по астрофизике присуждена М.Гильфанову и Е. Чуразову

2017-09-28T14:52:54+00:00 21 07 2017|Categories: Премии|Tags: , |

Российская академия наук присудила премию имени А.А. Белопольского 2017 года чл.-корр. РАН Марату Гильфанову и чл.-корр. РАН Евгению Чуразову за цикл работ «Рентгеновская диагностика аккреционных потоков вблизи черных дыр и нейтронных звезд в Млечном Пути и других галактиках». В цикле представлены результаты исследований авторами релятивистских компактных объектов в рентгеновском диапазоне с помощью советских, российских и международных орбитальных обсерваторий. Среди результатов, полученных в работах цикла – исследование спектральной переменности рентгеновского излучения от аккрецирующих нейтронных звезд и черных дыр, диагностика природы компактного объекта (нейтронная звезда или черная дыра) по его рентгеновскому излучению, карты рентгеновского излучения центральной зоны Галактики в широком диапазоне энергий от 3 до 200 кэВ, измерение яркости космического рентгеновского фона, исследование популяций рентгеновских двойных во внешних галактиках, метод рентгеновской диагностики темпа звездообразования в галактиках и ряд других. Эти результаты получили международное признание и широко цитируются. Сформулированные в этих работах идеи и теоретические модели в настоящее время развиваются в работах других исследователей как в России, так и за рубежом.

М.Р. Гильфанов и Е.М. Чуразов — ведущие специалисты в области астрофизики высоких энергий и рентгеновской астрономии, работающие на стыке теории и наблюдений. Они внесли важный вклад в успех обсерваторий РЕНТГЕН (на модуле КВАНТ комплекса космической станции МИР), ГРАНАТ и ИНТЕГРАЛ, начиная с планирования программы научных наблюдений, разработки новых алгоритмов анализа данных и заканчивая интерпретацией результатов наблюдений и построением теоретических моделей. Область их интересов включает, в частности, физические процессы в скоплениях галактик, активных ядерах галактик и квазарах, в аккреционных потоках вблизи нейтронных звезд и черных дыр в двойных звездных системах.

В настоящее время Гильфанов и Чуразов активно участвуют в подготовке и моделировании научной программы наблюдений орбитальной обсерватории СПЕКТР РГ, планируемой к запуску в сентябре 2018 года. Е.М. Чуразов является заместителем научного руководителя проекта по обработке и интерпретации данных.

Премия имени А.А. Белопольского
Постановление Президиума РАН

1 07, 2017

Природа бимодального распределения светимости ультраярких рентгеновских пульсаров

2017-10-24T15:29:51+00:00 01 07 2017|Categories: Публикации|Tags: , |

С.А. Гребенев

Указан механизм, который может быть ответственен за бимодальное распределение светимости сверхэддингтоновских рентгеновских пульсаров в двойных системах. Переход из “высокого”  в “низкое” состояние этих объектов объяснен сферизацией аккреционного потока из-за давления излучения при определенных (высоких) значениях темпа аккреции. Переход между состояниями может быть вызван плавным изменением темпа аккреции. С помощью предложенного механизма объяснено сложное поведение недавно открытых ультраярких рентгеновских пульсаров M 82 X-2, NGC 5907 ULX-1 и NGC 7793 P13. Открытие ULX-пульсаров стало одной из самых больших сенсаций в астрономии последних лет. Предложенная модель естественным образом объясняет и измеренное ускорение вращения нейтронной звезды в этих пульсарах, в несколько раз более медленное по сравнению с ожидаемым.

Рисунок: Зависимость радиуса сферизации аккреционного течения Rs, радиуса коротации Rc (нижняя граница заштрихованной области) и радиуса магнитосферы нейтронной звезды Rm от темпа аккреции для ULX-пульсара с таким же периодом, как у M82 X-2. Рассмотрены разные значения магнитного момента звезды μ = 0.3, 3 и 30 (сплошные линии снизу вверх). Заштрихованная область соответствует значениям радиуса Rm, при которых реализуется режим “пропеллера”. Вертикальная пунктирная линия показывает уровень эддингтоновского темпа аккрециии, звездочка, квадрат и кружок — принятые в статье значения Rm и 0 для максимально “высокого” состояния ULX-пульсаров NGC 5907 ULX-1, M82 X-2 и NGC 7793 P13. Правее штриховой линии источник переходит в “низкое” состояние с околоэддингтоновской светимостью.

С.А. Гребенев «Природа бимодального распределения светимости ультраярких рентгеновских пульсаров”, Письма в Астрономический журнал, 2017,  т. 43, № 7, с. 513–520.

12 06, 2017

Государственная Премия Российской Федерации 2017

2017-07-21T20:00:52+00:00 12 06 2017|Categories: Премии|Tags: |

В День России Президент вручил в Кремле Государственные премию академику Рашиду Алиевичу Сюняеву и д. ф.-м. н. Николаю Ивановичу Шакуре за выдающиеся достижения в области науки и технологий.

Подробнее