20 10, 2017

Россия составит карту Вселенной

2017-10-24T15:19:42+00:00 20 10 2017|Categories: Пресса о нас|

В следующем году наша страна собирается вывести на орбиту уникальный рентгеновский телескоп, который поможет понять тайны мироздания

Леонид Ситник

Построение широкомасштабной карты Вселенной — столь амбициозно сформулирована задача астрофизической обсерватории «Спектр-Рентген-Гамма», строительство которой завершают сейчас в НПО имени Лавочкина. Запуск ее намечен на следующий год, сам проект в изначальной конфигурации задумывался еще в советский период. Один из главных вопросов, на который должен ответить «Спектр-РГ», — как проходила эволюция галактик. В случае успеха миссии Россия сможет внести существенный вклад в развитие мировой науки.

Земная атмосфера для рентгеновских лучей эквивалентна слою свинца толщиной 1 м. А для наиболее информативного мягкого рентгеновского излучения непрозрачен даже 1 см воздуха. Нам с вами повезло: смертельное излучение из космоса до поверхности планеты не доходит. А вот для астрофизиков это проблема. Ведь многие интереснейшие объекты во Вселенной, к примеру — черные дыры, лучше всего изучать именно в рентгеновском диапазоне.

На заре космической эры считалось, что космос в рентгене окажется пустым. Но позднее выяснилось, что Вселенная буквально полыхает «рентгеном». Первый обзор неба в этом диапазоне, проведенный в 1971 году американским спутником Uhuru, обнаружил 339 источников. В 1990 году немецкий спутник ROSAT чувствительностью в 1000 раз больше внес в каталог уже 113 990 объектов. А кроме того, обнаружился рентгеновский фон, которым переливается весь небосвод. Есть предположение, что значительную часть этого «шума» создает множество точечных источников. Разглядеть их в этом «тумане» поможет «Спектр-РГ».

По словам академика РАН Рашида Сюняева, научного руководителя проекта, предполагается, что «Спектр-РГ» увидит около 3 млн сверхмассивных черных дыр, которые пожирают вещество со скоростью три массы Земли в секунду, а главное — зафиксирует около 100 тыс. скоплений галактик, то есть практически все эти колоссальные образования, состоящие из десятков тысяч галактик. Эти данные позволят астрофизикам составить самую грандиозную карту из всех возможных — карту Вселенной.

Набор инструментов

Основные научные приборы «Спектра-РГ» — немецкий рентгеновский телескоп eROSITA, изготовленный Институтом внеземной физики Общества имени Макса Планка, и аналогичный российский инструмент ART-XC, созданный Институтом космических исследований (ИКИ) РАН и Российским федеральным ядерным центром (РФЯЦ) в Сарове. «Немец» — толще и основательнее, «россиянин» — тоньше и чуть длиннее. Инструменты дополняют друг друга. eROSITA работает в более мягком рентгеновском диапазоне и обладает более широким полем зрения — 1 квадратный градус, что позволит «Спектру–РГ» за первые четыре года пребывания в космосе восемь раз сделать полный обзор неба.

— Таких обсерваторий для обзора всего неба с высокими чувствительностью, угловым и энергетическим разрешением больше нет, — рассказал «Известиям» заместитель директора ИКИ, руководитель работ по полезной нагрузке Михаил Павлинский. — Наземными инструментами подменить «Спектр-РГ» полностью невозможно.

Чувствительность eROSITA в 20 раз больше, чем у телескопа ROSAT, с помощью которого был сделан предыдущий вселенский обзор. Отсюда и способность разогнать тот «туман», который наполняет современную рентгеновскую картину мира.

Что касается российского телескопа ART-XC, то при меньшем поле зрения (0,3 кв. углового градуса) и разрешении (45 секунд) он «видит» в более жестком, высокоэнергетическом диапазоне, что позволит разглядеть детали, недоступные восприятию его немецкого «коллеги». Чтобы экранировать мягкое рентгеновское излучение, достаточно листа бумаги, а вот жесткий рентген способен проникнуть сквозь облака пыли и газа, закрывающие, к примеру, центры галактик. Между тем именно в центре нашей галактики, «всего» в 8 килопарсеках от Земли, притаилась черная дыра массой 4 млн Солнц.

Оба телескопа относятся к новейшему типу — в них используются зеркала косого падения. По прямой рентгеновский луч пролетит сквозь любое зеркало. Отразить или отклонить его можно лишь подставив поверхность тяжелого металла под очень острым углом — не больше половины градуса. Поэтому рентгеновское зеркало имеет вид трубы с едва заметным сужением сложной формы, фокусирующим излучение на детектор. Для повышения эффективности используют несколько зеркал разного диаметра с общей оптической осью, которые вкладывают одно в другое. Эти пакеты-матрешки должны быть сцентрированы с точностью 1,3 микрометра, то есть 1/50 толщины человеческого волоса. В обоих телескопах «Спектра-РГ» по семь таких блоков. В немецком инструменте — по 54 зеркала в каждом блоке, в нашем — по 28.

Но почему не сделать одну систему с зеркалами большого диаметра?

— Если вы наращиваете диаметр зеркальной системы, у вас увеличивается фокусное расстояние, — объяснил Михаил Павлинский. — Американцы и европейцы сделали два аппарата — Chandra и XMM-Newton, у которых фокусное расстояние порядка 8 м, и их стоимость зашкаливает за миллиард долларов. С нашим бюджетом мы бы никогда таких приборов не сделали. Даже сейчас стоимость eROSITA составляет около €100 млн.

Дороже золота

Космическая наука — недешевое удовольствие. Немецкие зеркала, к примеру, сделаны из никеля с отражающим покрытием из золота, российские — из никель-кобальта, но с иридиевым покрытием, которое в 10 раз дороже. Такой вот проект, где золото выходит дешевле.

— Иридий более эффективен для отражения излучения больших энергий, — пояснил Михаил Павлинский. — Здесь вопрос не в стоимости материала. Толщина слоя иридия, который наносится методом напыления, составляет порядка 10 нм. Но сама технология изготовления таких зеркал очень дорогая.

Одна из сложностей связана со шлифовкой поверхности. Ведь рентгеновское излучение характеризуется не только высокой энергией, но и очень короткой длиной волны, порядка 1 ангстрема — это диаметр атома водорода. Малейший дефект поверхности приводит к рассеиванию луча, поэтому шлифуется зеркало до шероховатости не выше 4 ангстрем. При этом толщина самого зеркала — 0,2 мм. Для сравнения: шероховатость зеркала европейского инфракрасного космического телескопа Herschel не должна была превышать 300 ангстрем. На шлифовку одного рентгеновского зеркала уходит три недели. Ранее такой технологией Россия не обладала. Ее пришлось создавать с нуля специалистам РФЯЦ. Так мы стали обладателями технологии, которой владеют только отдельные страны Западной Европы, Япония, США и которую сейчас усиленно развивает Китай.

На МАКС-2017 Аэрокосмический центр Германии (DLR) показал президенту России Владимиру Путину именно модель зеркала телескопа eROSITA, желая похвастать достижениями. Аналогичный предмет для гордости есть теперь и у нас. Однако на летном экземпляре ART-XC в конце концов решили поставить американские зеркала, изготовленные в Центре космических полетов имени Маршалла (NASA).

— Саров вышел на определенный уровень, на 90% освоил технологию, осталось 10%, быть может, даже 5%, — пояснил «Известиям» ситуацию Михаил Павлинский. — Но у нас не хватало времени, и требовалось дополнительное финансирование. А когда мы говорим, что купили американские зеркала, то надо понимать, что половину зеркальных систем американцы поставили как свой вклад в проект, то есть фактически нам они обошлись в несколько раз дешевле, чем если бы мы их делали сами. Но в следующем проекте, думаем, что уже сами справимся с этой задачей.

Россия и Германия поделили небо

Михаил Павлинский утверждает, что «Спектр-РГ» остался единственным российским проектом, в котором NASA сохранило свое участие поставками оборудования. И это лишний раз подчеркивает его значение. Кстати, eROSITA, по словам Михаила Павлинского, также «напичкана американскими компонентами», но, невзирая на это, разрешение на экспорт в Россию было получено без проволочек.

Скидка на американские зеркала стала частью сделки по своеобразному «распилу» Вселенной, которую наши и немецкие ученые поделили, как Испания и Португалия земной шар в 1494 году, — по меридиану.

— Когда мы договаривались с иностранными партнерами о том, какой прок будет российскому научному сообществу от того, что мы ставим тяжелый телескоп на наш аппарат, то решили поделить небо по нулевому меридиану в галактических координатах и отдать восточную часть российским ученым, а западную часть — немецким, — рассказал Михаил Павлинский. — Каждый обрабатывает свою зону в так называемый период правообладания — как минимум год, в течение которого право первой ночи будет у российских ученых в нашей части неба, а у немцев — в своей. Но это касается только данных телескопа eROSITA. По ART-XC все данные принадлежат российским ученым, за исключением небольшого участка порядка 0,5% неба, расположенного вокруг северного полюса эклиптики. Там договорились о совместной обработке с американцами за их вклад в проект.

Задержки — ничего необычного

«Спектр-РГ» планировалось запустить на несколько лет раньше — в 2014–2015-м, затем перенесли на 2016-й, потом на 2017-й, пока не назвали актуальную дату — октябрь 2018-го. Задерживать на Земле сложные научные аппараты — общемировая традиция, желающие без труда смогут найти, сколько планируемых дат пуска было у американского телескопа James Webb (до сих пор так и не запущенного).

Основной причиной переносов запуска «Спектра-РГ» были проблемы немецких партнеров при изготовлении рентгеновского телескопа eROSITA. Его ждали в Москве еще в 2010 году, но лишь в январе 2017 года летный экземпляр уникального научного прибора оказался в распоряжении НПО Лавочкина, разработчика платформы «Навигатор», на которой строится космический аппарат.

Российский телескоп был доставлен в НПО Лавочкина в конце 2016 года. После прибытия ценной посылки из Германии руководство проекта сообщило, что теперь у них «все в сборе». Однако есть одна важная система, поставка которой не только постоянно задерживалась, но до сих пор не произошла: речь о бортовом радиокомплексе (БРК), с помощью которого будет осуществляться управление и передача научных данных на расстояние 1,5 млн км.

Чтобы не повторилась история «Фобос-Грунт»

Информацию о трудностях с БРК подтвердил «Известиям» генеральный директор НПО Лавочкина Сергей Лемешевский.

— Есть вопросы по изготовлению летного образца БРК. Мы рассматриваем варианты решения этой проблемы. С технической точки зрения все вопросы выявлены, и речь идет о необходимости согласования графика работ для устранения проблемы. Думаю, что этот вопрос не скажется на сроках запуска миссии, — отметил он.

Проблемы уходят корнями в ноябрь 2011 года, когда из-за сбоя компьютера была потеряна межпланетная станция «Фобос-Грунт». На межпланетном аппарате стоял БРК, аналогичный тому, что планировался для «Спектра-РГ», но помочь в реанимации станции он не смог. После этой досадной аварии было принято решение пересмотреть элементную базу всех систем отечественных КА для дальнего космоса, а также добиться совместимости БРК «Спектра-РГ» с зарубежными средствами дальней космической связи. За БРК для «Спектра-РГ» отвечает ОАО «Российские космические системы» (РКС), объединяющее ведущие предприятия отечественного космического приборостроения. РКС не стремится распространяться о природе возникших проблем и способах их решения. Но предположить причину задержек нетрудно — это режим санкций и ограничение доступа к электронным компонентам необходимого качества.

Не вдаваясь в подробности, это предположение подтвердила «Известиям» пресс-служба госкорпорации «Роскосмос», в которую входит РКС.

— Санкции, конечно, влияют на проекты, подразумевающие международное сотрудничество. Но поскольку в их выполнении заинтересованы все участники, выработана система, которая позволяет оптимально решать поставленные научные задачи. Практически на изменение сроков реализуемого проекта сложившаяся ситуация не повлияла, — сообщили в пресс-службе.

Представители «Роскосмоса» заверили, что БРК «Спектра-РГ» будет совместим с зарубежными средствами дальней космической связи, поскольку это международный научный проект. Как сообщили в «Роскосмосе», при создании «Спектра-РГ» были использованы иностранные комплектующие.

Руководство НПО Лавочкина утверждает, что новой задержки пуска не произойдет, поскольку испытания идут с тестовым аналогом БРК.

— Уже решены все вопросы и завершены все испытания по входному контролю телескопов. Мы приступили к сборке телескопов с фермой, по завершении этих работ начинаем комплекс разобранных (космическая платформа и ферма с телескопами отдельно друг от друга) электро-радиотехнических испытаний, — сообщил Сергей Лемешевский.

По имеющейся информации, при подготовке «Спектра-РГ» выявился еще ряд проблем, в частности с программным обеспечением, отвечающим за работу немецкого телескопа eROSITA в составе КА.

— Интеграция телескопа eROSITA с космическим аппаратом еще не проводилась, — рассказал Сергей Лемешевский. — Проблем с программным обеспечением не возникало. Если сказать точнее, немецкая сторона сразу нас предупредила, что есть отличия от согласованных интерфейсов взаимодействия телескопа eROSITA с космическим аппаратом. Это потребовало от нас доработки программного обеспечения бортового комплекса управления. Доработка завершена, и сейчас мы выходим на этап интеграции российского и немецкого телескопов с космической платформой.

Для обеспечения приема сигнала крупнейшими отечественными антеннами в Медвежьих Озерах (64 м) и Уссурийске (70 м) запуск «Спектра-РГ» возможен только в марте-апреле или в сентябре-октябре. Недавний перенос запуска с сентября на октябрь 2018 года значит, что малейшая задержка приведет к уходу старта на 2019 год.

22 09, 2017

академик Рашид Алиевич Сюняев вошел в список самых цитируемых ученых мира

2017-09-28T15:21:10+00:00 22 09 2017|Categories: Пресс-центр ИКИ РАН, Пресса о нас|Tags: |

Имя академика Рашида Алиевича Сюняева, главного научного сотрудника отдела астрофизики высоких энергий ИКИ РАН, вошло в список двадцати двух наиболее цитируемых исследователей 2017 года, который составляет аналитическая компания Clarivate Analytics (ранее Thomson Reuters).

Компания Clarivate Anayltics специализируется в области наукометрии и научной аналитики. Каждый год, начиная с 2002, она публикует списки наиболее высоко цитируемых исследователей в физиологии и медицине, физике, химии и экономике (выбор направлений науки совпадает со знаменитым «нобелевским» набором номинаций). В этом году в него впервые были включены российские исследователи: в области химии — Георгий Шульпин, старший научный сотрудник Института химической физики им. Н.Н. Семёнова РАН, и в области физики — Рашид Сюняев, главный научный сотрудник ИКИ РАН, директор Института астрофизики Общества им. Макса Планка (Германия), приглашенный профессор Института высших исследований в Принстоне (США). Формулировка: «за основополагающий вклад в наше понимание Вселенной, включая её происхождение, процессы образования галактик, дисковую аккрецию на черные дыры и многие другие космологические явления».

Среди результатов, полученных Р.А. Сюняевым, наиболее известны «стандартная» теория дисковой аккреции на черные дыры и нейтронные звезды (Шакура и Сюняев, 1973, 1976); формула Сюняева-Титарчука (1980) для спектра излучения, формирующегося при комптонизации низкочастотных фотонов в горячей плазме; предсказание влияния акустических волн в ранней Вселенной на угловые флуктуации реликтового излучения (акустические пики) и на пространственное распределение галактик – так называемые барионные акустические осцилляции (1970); «эффект Сюняева-Зельдовича» (1972), позволяющий использовать скопления галактик в качестве мощного инструмента наблюдательной космологии. По данным астрофизической базы данных НАСА ADS (Astrophysics Data System) на его работы в отечественных и зарубежных научных журналах сделано более 60 000 ссылок, а статья Н.И. Шакуры и Р.А. Сюняева (1973) является самой цитируемой статьей в мировой теоретической астрофизике (8 140 ссылок). Индекс Хирша равен 104.

В этом году Р.А. Сюняеву и Н.И. Шакуре была присуждена Государственная премия Российской Федерации в области науки и технологий 2016 г. за создание теории дисковой аккреции вещества на черные дыры.

Рашид Алиевич Сюняев — научный руководитель готовящейся к запуску рентгеновской орбитальной обсерватории «Спектр-Рентген-Гамма». Это крупнейший совместный проект России и Германии в области астрофизики, нацеленный на решение фундаментальных вопросов космологии: природы темной энергии и темной материи, возникновения и роста сверхмассивных черных дыр, а также поиск объектов неизвестной природы.

Список лауреатов Clarivate Analytics составляется на основе высоких показателей цитирования, а также предположений о том, какие направления исследований и работы ассоциируются с важными открытиями или позволили осуществить заметный прогресс в данной области науки и имеют шанс быть удостоенными Нобелевской премии в ближайшие годы. Обычно называется несколько кандидатур, в этом году в номинации «физика» было названо пять исследователей по трем разным направлениям.

Clarivate Analytics ведёт базы данных научных публикаций, в том числе знаменитую Web of Science, а также Cortellis, Derwent, CompuMark, MarkMonitor и Techstreet. Ранее эта компания была частью Thompson Reuters.

Clarivate Analytics: A New Class of Nobel-Worthy Scientists

Max-Planck Institute for Astrophysics: Rashid Sunyaev becomes 2017 Citation Laureate

27 02, 2017

Зеркало для фотона

2017-06-30T15:56:57+00:00 27 02 2017|Categories: Популярно, Пресса о нас|Tags: , |

В следующем году в космос должен отправится уникальный российский рентгеновский телескоп. С его помощью астрономы хотят узнать больше о происхождении Вселенной и составить ее карту. Как создавали телескоп?

20 01, 2017

Что может рассказать один юный квазар?

2017-06-30T15:01:24+00:00 20 01 2017|Categories: Без рубрики, Популярно, Пресса о нас|Tags: , |

Ученые, занимающиеся космическими исследованиями, — настоящие детективы. Как Шерлок Холмс, используя метод дедукции и косвенные наблюдения, вычислял убийцу, так и они, собирая и анализируя данные излучений в различных спектрах, могут рассказать, что происходило во Вселенной много-много лет назад и как возникли известные нам сегодня феномены.

Сотрудники Института космических исследований РАН (Москва) совместно с коллегами из Института солнечно-земной физики СО РАН (Иркутск) ищут, каталогизируют и исследуют квазары — мощные, далекие и активные центры других галактик. По принятой сейчас гипотезе считается, что в центре таких галактик располагается сверхмассивная (массой от миллиона до миллиардов масс Солнца) черная дыра. Она притягивает к себе материю из окружающего пространства, которое, разгоняясь, рождает мощное излучение практически во всех диапазонах электромагнитного излучения. Наблюдая его, мы говорим, что «видим квазар». В центре нашей Галактики тоже есть черная дыра, но она сейчас не активна, то есть вещество практически не «падает» на нее.

Исследуя квазары, ученые ищут ответ на вопрос, как появились галактики и сверхмассивные черные дыры в их центре. Например, обнаруженный в этом году исследователями ИКИ РАН и ИСЗФ СО РАН один из самых далеких рентгеновских квазаров 3XMM J125329.4+305539 находится на красном смещении 5,08. Значит, его свет возник во Вселенной спустя всего лишь миллиард с небольшим лет после Большого взрыва (для сравнения, сейчас нашей Вселенной почти 14 млрд лет). Учитывая космологическое расстояние, на Земле мы видим квазар не таким, какой он сейчас, а каким был «в молодости». 

Работа, которую ученые ведут сейчас на двух телескопах в Специальной астрофизической обсерватории (п. Нижний Архыз, Карачаево-Черкесская Республика) и Саянской обсерватории ИСЗФ СО РАН (п. Монды, Республика Бурятия) по поиску и систематизации квазаров предваряет исследования, которые планируется провести с помощью аппарата «Спектр-Рентген-Гамма».

Российско-германскую обсерваторию «Спектр-Рентген-Гамма» (СРГ) выведут на орбиту в 2017 году. С ее помощью исследователи надеются создать карту Вселенной в рентгеновском диапазоне, отметить на ней крупные скопления галактик и собрать информацию, чтобы ответить на вопрос, а как, собственно, появляются и развиваются галактики. СРГ строится в Научно-производственном объединении им. С.А. Лавочкина, научная аппаратура разрабатывается в ИКИ РАН и Институте внеземной физики Общества им. Макса Планка (Германия). 

Что делает черная дыра в центре галактики?

— Как ученые выяснили, что в центре галактик есть массивные черные дыры? Конечно, по наблюдениям, — говорит заведующий сектором отдела астрофизики высоких энергий ИКИ РАН доктор физико-математических наук, профессор РАН Сергей Юрьевич Сазонов. — Это видно даже по нашей галактике: звезды вращаются по кеплеровским эллиптическим орбитам вокруг какой-то массы; почти не вызывает сомнений, что там находится черная дыра весом 4 миллиона масс Солнца. Эта черная дыра, можно сказать, пассивная: мы видим, что она существует, только по движению вокруг нее других тел. 

В прочих галактиках мы наблюдаем похожие явления, с той лишь разницей, что если черная дыра активна, в нее падает межзвездный газ. Однако он летит не по прямой, а закручивается, образуя аккреционный диск. Атомы вещества сталкиваются друг с другом и разогреваются, излишки энергии выбрасываются в окружающее пространство, и именно это излучение мы и можем наблюдать в разных диапазонах, — объясняет ученый. 

В 1943 году американский астроном Карл Кинан Сейферт первым описал подобные близкие галактики с активным ядром. Спектр их излучения содержит множество специфических линий, указывающих на мощные и высокоскоростные выбросы газа. Сейчас их называют в честь ученого — сейфертовские галактики. 

— Есть аналогичные, но более далекие объекты — квазары, — рассказывает Сергей Сазонов. — Их открыли позже и изначально считали звездами, собственно, название «квазар» и образовано от словосочетания «наподобие звезды» (из лат. quas(i) — наподобие, нечто вроде + англ. (st)ar — звезда). Сначала ученые определили их как звезды со странными свойствами и спектрами излучения, но потом поняли, что это такие же ядра галактик, только более мощные и далекие. И живут они по сходным с сейфертовскими галактиками физическим законам.

Сейчас самый далекий от нас квазар находится на красном смещении около 7 (мы принимаем излучение, испущенное в тот момент, когда Вселенной было менее одного миллиарда лет). Как известно, наша Вселенная расширяется, а значит, все объекты в ней удаляются друг от друга. При этом уменьшаются частоты излучения удаляющегося, например, квазара. Это похоже на изучаемый в школе эффект Доплера. Допустим, в своей системе объект излучает в ультрафиолетовом спектре (с высокими частотами), а мы наблюдаем его в видимом спектре излучения. 

Аккреция (лат. accrētiō «приращение, увеличение» от accrēscere «прирастать») — процесс приращения массы небесного тела путем гравитационного притяжения материи (обычно газа) на него из окружающего пространства.

— Исследуя квазары, ученые хотят понять, как сверхмассивные черные дыры смогли вырасти. Есть другой класс черных дыр, более легких, от трех до нескольких десятков масс Солнца. Они образуются, когда умирает массивная звезда. Если в паре с ней была другая, то вещество последней аккрецируется в черную дыру. Это так называемые рентгеновские двойные системы, излучающие, соответственно, в рентгеновском диапазоне. 

Можно предположить, что когда Вселенной было всего сто миллионов лет, уже появились первые звезды, которые прожили еще несколько миллионов лет и превратились в черные дыры. Но неясно, как они смогли вырасти до массивных и сверхмассивных за последующие несколько сотен миллионов лет? Если бы они просто быстро «затягивали» вещество из окружающей среды, так бы не получилось, — поясняет Сергей Сазонов. — С другой стороны, понимание процессов формирования таких черных дыр, возможно, даст нам ответ на вопрос: как образуются галактики? 

 Получается, в их центрах росли черные дыры, но как связаны эти два явления? Сейчас популярно объяснение: черные дыры выросли и стали достаточно большими, чтобы своей огромной энергией влиять на галактики вокруг. Для понимания этого нужно найти как можно больше квазаров, причем в разных диапазонах. Мы ищем в рентгеновском, — говорит ученый.

Перепись «квазарного населения»

В октябре исследователи обнаружили один из самых далеких рентгеновских квазаров с помощью нового спектрографа АДАМ на 1,6-метровом телескопе АЗТ-33ИК Саянской солнечной обсерватории ИСЗФ СО РАН. Этот результат — часть работы по составлению каталога квазаров по данным орбитальных и наземных обсерваторий. Группа астрофизиков использовала данные космического рентгеновского телескопа XMM-Newton, а также оптические данные Слоановского обзора (SDSS) и обзора всего неба WISE (инфракрасный диапазон) — они нужны, чтобы среди сотен тысяч рентгеновских источников выделить именно далекие квазары.

Sloan Digital Sky Survey (SDSS, с англ. — «Слоуновский цифровой небесный обзор») — проект широкомасштабного исследования многоспектральных изображений и спектров красного смещения звезд и галактик при помощи 2,5-метрового широкоугольного телескопа в обсерватории Апачи-Пойнт в штате Нью-Мексико.

 XMM-Newton — телескоп с маленьким полем зрения: сегодня он смотрит на один объект, а завтра — на другой. За 15 лет такими «уколами» он покрыл два процента неба. Дальше ученые ИКИ РАН наложили эти рентгеновские данные на общедоступные данные Слоановского цифрового обзора и обзора космической обсерватории WISE, полученные с помощью телескопов, работающих в нескольких диапазонах видимого и инфракрасного диапазонов длин волн. Площадь неба в области пересечения всех этих данных составляет менее одного процента. 

— Дальше мы посмотрели на оптические и инфракрасные цвета объектов, попавших в обзор, — поясняет Сергей Сазонов. — Нас интересовали квазары дальше определенного расстояния — с красным смещением больше 3. И мы знаем, что такие квазары должны иметь определенную «окраску». Идея была искать их среди рентгеновских источников, и наш молодой сотрудник Георгий Хорунжев нашел более 900 таких кандидатов.

Оказалось, что 2/3 квазаров из найденных уже известны. Новых кандидатов нашлось более 350, для них были сделаны оценки красных смещений по цветам объектов. Затем ученые проверили отдельные объекты на телескопах: АЗТ-33ИК и Большом телескопе азимутальном. Обнаруженный источник 3XMM J125329.4+305539 оказался очень далеким — он расположен на красном смещении 5,08, что соответствует возрасту Вселенной чуть более одного миллиарда лет. 

— Это не самый далекий квазар, но изюминка в чем: всё, что можно найти сейчас, нашли в оптическом диапазоне, а затем некоторые объекты дополнительно изучили в рентгеновском. А мы сделали наоборот: нашли «рентгеном» и подтвердили в «оптике». Интересно понять, сколько таких объектов во Вселенной. Мы детектировали несколько объектов, а их миллионы. Нам нужно научиться пересчитывать свойства этих нескольких квазаров для остальных, используя каталог. Важно именно то, что мы применили другой метод, — подчеркивает Сергей Сазонов. 

На 1,6-метровом телескопе АЗТ-33ИК Саянской обсерватории для проведения этой работы был установлен новый спектрограф видимого и близкого инфракрасного диапазона АДАМ. Этот прибор — результат совместной работы трех институтов Российской академии наук. Основные идеи и научные задачи прибора были сформулированы в ИКИ РАН, разработан и изготовлен он в Специальной астрофизической обсерватории РАН, а установлен на телескопе АЗТ-33ИК сотрудниками ИСЗФ СО РАН.

— Задача состояла в том, чтобы сделать прибор «максимально прозрачным»: мы должны были терять как можно меньше света за время прохождения луча через линзы. Таким образом, за заданное время экспозиции мы регистрируем максимально возможное количество фотонов, так что даже на небольшом 1,6-метровом телескопе можем получать соответствующие спектры довольно слабых объектов, — объясняет старший научный сотрудник отдела астрофизики высоких энергий ИКИ РАН кандидат физико-математических наук Родион Анатольевич Буренин.

 Помимо чрезвычайно прозрачной линзы прибор оснастили высокоэффективной ПЗС-матрицей. ПЗС — приборы с зарядовой связью — используются не только в специальном научном оборудовании, но и в обычных зеркальных цифровых фотоаппаратах: именно они преобразуют фотоны, попавшие в объектив, в электрические заряды, которые затем формируют изображение на экране камеры.

 — В этом приборе стоит матрица последнего поколения, у которой высокая чувствительность в инфракрасном диапазоне — выше, чем у обычных, — говорит Родион Буренин. —  Кроме того, у нас были ограничения по весу. Поэтому мы сделали спектрограф, позволивший нам облегчить оптику, использовали более легкие зеркала с серебряным покрытием и высокими отражающими свойствами. Сама конструкция телескопа тоже интересна и оптимально подошла для наших задач: под зеркалом АЗТ-ЗЗИК располагаются оптические столы, где можно разместить разные приборы, а затем, поворачивая косое зеркало между этими приборами, легко переключаться. 

— В России не так много инструментов для астрономических наблюдений, — говорит заведующий лабораторией инфракрасных методов в астрофизике ИСЗФ СО РАН кандидат физико-математических наук Максим Викторович Еселевич.

— У ИКИ РАН большой проект, они искали поддержку в различных местах, и нам удалось организовать с ними сотрудничество. Своих работ по наблюдению далеких астрофизических явлений у нас проводится не так много, например, мы делаем мониторинг оптических послесвечений гамма-всплесков, но в основном занимаемся наблюдениями околоземного космического пространства: космического мусора, астероидов. Участвуя в совместном проекте, мы рассчитывали расширить круг наших задач, — рассказывает Максим Еселевич.  

Карта неба в рентгеновском диапазоне 

— Мы надеемся, что в конце следующего года будет запущен «Спектр-Рентген-Гамма» и появится возможность сделать обзор всего неба в рентгеновском диапазоне на полтора-два порядка чувствительнее, чем сейчас. Это качественный скачок, как если бы раньше у вас был метровый телескоп, а потом появился шестиметровый, — объясняет Родион Буренин.  

 — Можно еще иначе сказать, — дополняет Сергей Сазонов. — Данные XMM-Newton в рентгеновском диапазоне есть по одному проценту неба, а СРГ отсканирует всё небо, и по чувствительности данные будут аналогичные. Информация станет применима для поиска большего количества квазаров. Мы ожидаем найти миллионы активных в рентгене ядер галактик. Дальше их можно будет изучать в оптическом диапазоне, потому что при проверке не все из них окажутся квазарами.

 Подготовили Юлия Позднякова, Алёна Литвиненко

Взято с сайта www.sbras.info

7 10, 2016

Астрономы из России открыли одну из самых далеких черных дыр

2017-06-30T17:14:53+00:00 07 10 2016|Categories: Пресса о нас|Tags: , |

МОСКВА, 7 окт – РИА Новости. Астрономы из Института космических исследований РАН открыли один из самых далеких квазаров, активных сверхмассивных черных дыр в центрах далеких галактик, возникший почти сразу после Большого Взрыва и рождения первых галактик Вселенной, говорится в статье, принятой к печати в Письма в Астрономический журнал.

1478722643

«Мы провели спектроскопическую проверку двух десятков рентгеновских источников, найденных недавно. Один из них, 3XMM J125329.4+305539, оказался очень далеким — он расположен на красном смещении 5,08, что соответствует возрасту Вселенной чуть более одного миллиарда лет. Это не самый далекий квазар, известный в настоящее время, но он, возможно, самый далекий из тех, что были обнаружены именно в рентгеновском диапазоне», — рассказывает Сергей Сазонов из Института космических исследований РАН в Москве.

Квазары представляют собой сверхмассивные черные дыры в центрах далеких галактик, которые активно поглощают материю и «выплевывают» часть ее в виде узких пучков материи, разогнанных до околосветовых скоростей, и выделяемых ими потоков энергии, чья светимость в десятки и сотни миллионов раз превышает яркость Солнца.

Как сегодня считают астрономы, квазары были наиболее активны примерно 10 миллиардов лет назад, когда во Вселенной активно формировались первые крупные скопления галактик. Детали этого процесса до сих пор остаются неизвестными для ученых, и поэтому они активно следят за квазарами, чье излучение может «подсветить» те клубы газа, из которых рождались галактики и раскрыть их тайны.

Сазонов и его коллеги по институту, а также ученые из Саянской солнечной обсерватории, добавили в число сверхдалеких и древних квазаров еще один объект, изучая источники рентгеновского излучения, найденные различными орбитальными и наземными телескопами.

Как отмечают ученые, число далеких квазаров, найденных в рентгеновском диапазоне, крайне мало – их общее количество не превышает двух сотен ядер галактик, и российские астрономы пытались расширить его, изучая спектры рентгеновских объектов, похожих на квазары.

Для этого Сазонов и его коллеги проанализировали каталоги объектов, за которыми наблюдали телескопы XMM-Newton, наземные обсерватории в рамках Слоановского обзора неба, и инфракрасного телескопа WISE. Комбинация оптических, рентгеновских и инфракрасных снимков помогла им отсеять рентгеновские объекты, не способные быть квазарами в принципе, и отобрать для наблюдений только самые «подозрительные» источники рентгена.

В итоге ученым удалось получить самую большую на сегодня выборку рентгеновских квазаров и кандидатов в квазары — в каталог вошли 903 источника, из них более 350 новых кандидатов, для которых были определены красные смещения при помощи спектрографа АДАМ, установленного на 1,6 метровый телескоп АЗТ-33ИК Саянской обсерватории.

Этот прибор, как передает пресс-служба ИКИ, является результатом совместной работы трех институтов Российской академии наук. По словам Родиона Буренина, сотрудника института, он будет использоваться для наблюдения за теми рентгеновскими источниками, которые будут открыты при помощи российской космической обсерватории «Спектр-РГ», запуск которой намечен на сентябрь следующего года.

Как считают ученые, открытие столь далекого квазара говорит о том, что уже сейчас можно значительно увеличить число известных рентгеновских квазаров, используя ранее собранные данные. Запуск «Спектра-РГ», в свою очередь, позволит обнаружить все наиболее яркие квазары в наблюдаемой части Вселенной, заключают ученые.

28 08, 2014

Карлики взорвались открытием

2017-06-30T17:15:28+00:00 28 08 2014|Categories: Пресса о нас|Tags: , , , , |

screenshot-2016-09-17-19-14-10

(Газета.РУ, 28.08.2014) Выдающийся успех российских астрономов: оперативные наблюдения сверхновой SN2014J, вспыхнувшей в январе 2014 года, позволили подтвердить теоретическую концепцию о том, что такое сверхновые типа Ia. Зафиксированное гамма-излучение кобальта-56 убедительно показывает, что сверхновые — это гигантские термоядерные взрывы белых карликов, сверхплотных остатков звезд.

5 08, 2014

Российские астрофизики выявили три разрушенных черными дырами звезды

2017-06-30T17:16:08+00:00 05 08 2014|Categories: Пресса о нас|Tags: , , , |

(Взгляд, 5 августа 2014) Исследователи из Института космических исследований РАН и МФТИ открыли три возможных события приливного разрушения звезд сверхмассивными черными дырами в центрах галактик, об этом сообщается в статье Ильдара Хабибуллина,Сергея Сазонова и Рашида Сюняева.

8 08, 2013

Столетие академика Зельдовича отметят крупной конференцией в Москве

2017-06-30T17:16:54+00:00 08 08 2013|Categories: Пресса о нас|Tags: |

(Газета.Ru 23.08.2013В честь столетия со дня рождения академика Якова Зельдовича отдел астрофизики высоких энергий Института космических исследований Российской академии наук (ИКИ РАН) планирует провести международную конференцию, посвященную огромному вкладу Зельдовича в астрофизику.