академик Рашид Алиевич Сюняев вошел в список самых цитируемых ученых мира

2017-09-22T17:10:55+00:00

Имя академика Рашида Алиевича Сюняева, главного научного сотрудника отдела астрофизики высоких энергий ИКИ РАН, вошло в список двадцати двух наиболее цитируемых исследователей 2017 года, который составляет аналитическая компания Clarivate Analytics (ранее Thomson Reuters).

Компания Clarivate Anayltics специализируется в области наукометрии и научной аналитики. Каждый год, начиная с 2002, она публикует списки наиболее высоко цитируемых исследователей в физиологии и медицине, физике, химии и экономике (выбор направлений науки совпадает со знаменитым «нобелевским» набором номинаций). В этом году в него впервые были включены российские исследователи: в области химии — Георгий Шульпин, старший научный сотрудник Института химической физики им. Н.Н. Семёнова РАН, и в области физики — Рашид Сюняев, главный научный сотрудник ИКИ РАН, директор Института астрофизики Общества им. Макса Планка (Германия), приглашенный профессор Института высших исследований в Принстоне (США). Формулировка: «за основополагающий вклад в наше понимание Вселенной, включая её происхождение, процессы образования галактик, дисковую аккрецию на черные дыры и многие другие космологические явления».

Среди результатов, полученных Р.А. Сюняевым, наиболее известны «стандартная» теория дисковой аккреции на черные дыры и нейтронные звезды (Шакура и Сюняев, 1973, 1976); формула Сюняева-Титарчука (1980) для спектра излучения, формирующегося при комптонизации низкочастотных фотонов в горячей плазме; предсказание влияния акустических волн в ранней Вселенной на угловые флуктуации реликтового излучения (акустические пики) и на пространственное распределение галактик – так называемые барионные акустические осцилляции (1970); «эффект Сюняева-Зельдовича» (1972), позволяющий использовать скопления галактик в качестве мощного инструмента наблюдательной космологии. По данным астрофизической базы данных НАСА ADS (Astrophysics Data System) на его работы в отечественных и зарубежных научных журналах сделано более 60 000 ссылок, а статья Н.И. Шакуры и Р.А. Сюняева (1973) является самой цитируемой статьей в мировой теоретической астрофизике (8 140 ссылок). Индекс Хирша равен 104.

В этом году Р.А. Сюняеву и Н.И. Шакуре была присуждена Государственная премия Российской Федерации в области науки и технологий 2016 г. за создание теории дисковой аккреции вещества на черные дыры.

Рашид Алиевич Сюняев — научный руководитель готовящейся к запуску рентгеновской орбитальной обсерватории «Спектр-Рентген-Гамма». Это крупнейший совместный проект России и Германии в области астрофизики, нацеленный на решение фундаментальных вопросов космологии: природы темной энергии и темной материи, возникновения и роста сверхмассивных черных дыр, а также поиск объектов неизвестной природы.

Список лауреатов Clarivate Analytics составляется на основе высоких показателей цитирования, а также предположений о том, какие направления исследований и работы ассоциируются с важными открытиями или позволили осуществить заметный прогресс в данной области науки и имеют шанс быть удостоенными Нобелевской премии в ближайшие годы. Обычно называется несколько кандидатур, в этом году в номинации «физика» было названо пять исследователей по трем разным направлениям.

Clarivate Analytics ведёт базы данных научных публикаций, в том числе знаменитую Web of Science, а также Cortellis, Derwent, CompuMark, MarkMonitor и Techstreet. Ранее эта компания была частью Thompson Reuters.

Clarivate Analytics: A New Class of Nobel-Worthy Scientists

Max-Planck Institute for Astrophysics: Rashid Sunyaev becomes 2017 Citation Laureate

академик Рашид Алиевич Сюняев вошел в список самых цитируемых ученых мира 2017-09-22T17:10:55+00:00

Зеркало для фотона

2017-06-30T15:56:57+00:00

В следующем году в космос должен отправится уникальный российский рентгеновский телескоп. С его помощью астрономы хотят узнать больше о происхождении Вселенной и составить ее карту. Как создавали телескоп?

Зеркало для фотона 2017-06-30T15:56:57+00:00

Что может рассказать один юный квазар?

2017-06-30T15:01:24+00:00

Ученые, занимающиеся космическими исследованиями, — настоящие детективы. Как Шерлок Холмс, используя метод дедукции и косвенные наблюдения, вычислял убийцу, так и они, собирая и анализируя данные излучений в различных спектрах, могут рассказать, что происходило во Вселенной много-много лет назад и как возникли известные нам сегодня феномены.

Сотрудники Института космических исследований РАН (Москва) совместно с коллегами из Института солнечно-земной физики СО РАН (Иркутск) ищут, каталогизируют и исследуют квазары — мощные, далекие и активные центры других галактик. По принятой сейчас гипотезе считается, что в центре таких галактик располагается сверхмассивная (массой от миллиона до миллиардов масс Солнца) черная дыра. Она притягивает к себе материю из окружающего пространства, которое, разгоняясь, рождает мощное излучение практически во всех диапазонах электромагнитного излучения. Наблюдая его, мы говорим, что «видим квазар». В центре нашей Галактики тоже есть черная дыра, но она сейчас не активна, то есть вещество практически не «падает» на нее.

Исследуя квазары, ученые ищут ответ на вопрос, как появились галактики и сверхмассивные черные дыры в их центре. Например, обнаруженный в этом году исследователями ИКИ РАН и ИСЗФ СО РАН один из самых далеких рентгеновских квазаров 3XMM J125329.4+305539 находится на красном смещении 5,08. Значит, его свет возник во Вселенной спустя всего лишь миллиард с небольшим лет после Большого взрыва (для сравнения, сейчас нашей Вселенной почти 14 млрд лет). Учитывая космологическое расстояние, на Земле мы видим квазар не таким, какой он сейчас, а каким был «в молодости». 

Работа, которую ученые ведут сейчас на двух телескопах в Специальной астрофизической обсерватории (п. Нижний Архыз, Карачаево-Черкесская Республика) и Саянской обсерватории ИСЗФ СО РАН (п. Монды, Республика Бурятия) по поиску и систематизации квазаров предваряет исследования, которые планируется провести с помощью аппарата «Спектр-Рентген-Гамма».

Российско-германскую обсерваторию «Спектр-Рентген-Гамма» (СРГ) выведут на орбиту в 2017 году. С ее помощью исследователи надеются создать карту Вселенной в рентгеновском диапазоне, отметить на ней крупные скопления галактик и собрать информацию, чтобы ответить на вопрос, а как, собственно, появляются и развиваются галактики. СРГ строится в Научно-производственном объединении им. С.А. Лавочкина, научная аппаратура разрабатывается в ИКИ РАН и Институте внеземной физики Общества им. Макса Планка (Германия). 

Что делает черная дыра в центре галактики?

— Как ученые выяснили, что в центре галактик есть массивные черные дыры? Конечно, по наблюдениям, — говорит заведующий сектором отдела астрофизики высоких энергий ИКИ РАН доктор физико-математических наук, профессор РАН Сергей Юрьевич Сазонов. — Это видно даже по нашей галактике: звезды вращаются по кеплеровским эллиптическим орбитам вокруг какой-то массы; почти не вызывает сомнений, что там находится черная дыра весом 4 миллиона масс Солнца. Эта черная дыра, можно сказать, пассивная: мы видим, что она существует, только по движению вокруг нее других тел. 

В прочих галактиках мы наблюдаем похожие явления, с той лишь разницей, что если черная дыра активна, в нее падает межзвездный газ. Однако он летит не по прямой, а закручивается, образуя аккреционный диск. Атомы вещества сталкиваются друг с другом и разогреваются, излишки энергии выбрасываются в окружающее пространство, и именно это излучение мы и можем наблюдать в разных диапазонах, — объясняет ученый. 

В 1943 году американский астроном Карл Кинан Сейферт первым описал подобные близкие галактики с активным ядром. Спектр их излучения содержит множество специфических линий, указывающих на мощные и высокоскоростные выбросы газа. Сейчас их называют в честь ученого — сейфертовские галактики. 

— Есть аналогичные, но более далекие объекты — квазары, — рассказывает Сергей Сазонов. — Их открыли позже и изначально считали звездами, собственно, название «квазар» и образовано от словосочетания «наподобие звезды» (из лат. quas(i) — наподобие, нечто вроде + англ. (st)ar — звезда). Сначала ученые определили их как звезды со странными свойствами и спектрами излучения, но потом поняли, что это такие же ядра галактик, только более мощные и далекие. И живут они по сходным с сейфертовскими галактиками физическим законам.

Сейчас самый далекий от нас квазар находится на красном смещении около 7 (мы принимаем излучение, испущенное в тот момент, когда Вселенной было менее одного миллиарда лет). Как известно, наша Вселенная расширяется, а значит, все объекты в ней удаляются друг от друга. При этом уменьшаются частоты излучения удаляющегося, например, квазара. Это похоже на изучаемый в школе эффект Доплера. Допустим, в своей системе объект излучает в ультрафиолетовом спектре (с высокими частотами), а мы наблюдаем его в видимом спектре излучения. 

Аккреция (лат. accrētiō «приращение, увеличение» от accrēscere «прирастать») — процесс приращения массы небесного тела путем гравитационного притяжения материи (обычно газа) на него из окружающего пространства.

— Исследуя квазары, ученые хотят понять, как сверхмассивные черные дыры смогли вырасти. Есть другой класс черных дыр, более легких, от трех до нескольких десятков масс Солнца. Они образуются, когда умирает массивная звезда. Если в паре с ней была другая, то вещество последней аккрецируется в черную дыру. Это так называемые рентгеновские двойные системы, излучающие, соответственно, в рентгеновском диапазоне. 

Можно предположить, что когда Вселенной было всего сто миллионов лет, уже появились первые звезды, которые прожили еще несколько миллионов лет и превратились в черные дыры. Но неясно, как они смогли вырасти до массивных и сверхмассивных за последующие несколько сотен миллионов лет? Если бы они просто быстро «затягивали» вещество из окружающей среды, так бы не получилось, — поясняет Сергей Сазонов. — С другой стороны, понимание процессов формирования таких черных дыр, возможно, даст нам ответ на вопрос: как образуются галактики? 

 Получается, в их центрах росли черные дыры, но как связаны эти два явления? Сейчас популярно объяснение: черные дыры выросли и стали достаточно большими, чтобы своей огромной энергией влиять на галактики вокруг. Для понимания этого нужно найти как можно больше квазаров, причем в разных диапазонах. Мы ищем в рентгеновском, — говорит ученый.

Перепись «квазарного населения»

В октябре исследователи обнаружили один из самых далеких рентгеновских квазаров с помощью нового спектрографа АДАМ на 1,6-метровом телескопе АЗТ-33ИК Саянской солнечной обсерватории ИСЗФ СО РАН. Этот результат — часть работы по составлению каталога квазаров по данным орбитальных и наземных обсерваторий. Группа астрофизиков использовала данные космического рентгеновского телескопа XMM-Newton, а также оптические данные Слоановского обзора (SDSS) и обзора всего неба WISE (инфракрасный диапазон) — они нужны, чтобы среди сотен тысяч рентгеновских источников выделить именно далекие квазары.

Sloan Digital Sky Survey (SDSS, с англ. — «Слоуновский цифровой небесный обзор») — проект широкомасштабного исследования многоспектральных изображений и спектров красного смещения звезд и галактик при помощи 2,5-метрового широкоугольного телескопа в обсерватории Апачи-Пойнт в штате Нью-Мексико.

 XMM-Newton — телескоп с маленьким полем зрения: сегодня он смотрит на один объект, а завтра — на другой. За 15 лет такими «уколами» он покрыл два процента неба. Дальше ученые ИКИ РАН наложили эти рентгеновские данные на общедоступные данные Слоановского цифрового обзора и обзора космической обсерватории WISE, полученные с помощью телескопов, работающих в нескольких диапазонах видимого и инфракрасного диапазонов длин волн. Площадь неба в области пересечения всех этих данных составляет менее одного процента. 

— Дальше мы посмотрели на оптические и инфракрасные цвета объектов, попавших в обзор, — поясняет Сергей Сазонов. — Нас интересовали квазары дальше определенного расстояния — с красным смещением больше 3. И мы знаем, что такие квазары должны иметь определенную «окраску». Идея была искать их среди рентгеновских источников, и наш молодой сотрудник Георгий Хорунжев нашел более 900 таких кандидатов.

Оказалось, что 2/3 квазаров из найденных уже известны. Новых кандидатов нашлось более 350, для них были сделаны оценки красных смещений по цветам объектов. Затем ученые проверили отдельные объекты на телескопах: АЗТ-33ИК и Большом телескопе азимутальном. Обнаруженный источник 3XMM J125329.4+305539 оказался очень далеким — он расположен на красном смещении 5,08, что соответствует возрасту Вселенной чуть более одного миллиарда лет. 

— Это не самый далекий квазар, но изюминка в чем: всё, что можно найти сейчас, нашли в оптическом диапазоне, а затем некоторые объекты дополнительно изучили в рентгеновском. А мы сделали наоборот: нашли «рентгеном» и подтвердили в «оптике». Интересно понять, сколько таких объектов во Вселенной. Мы детектировали несколько объектов, а их миллионы. Нам нужно научиться пересчитывать свойства этих нескольких квазаров для остальных, используя каталог. Важно именно то, что мы применили другой метод, — подчеркивает Сергей Сазонов. 

На 1,6-метровом телескопе АЗТ-33ИК Саянской обсерватории для проведения этой работы был установлен новый спектрограф видимого и близкого инфракрасного диапазона АДАМ. Этот прибор — результат совместной работы трех институтов Российской академии наук. Основные идеи и научные задачи прибора были сформулированы в ИКИ РАН, разработан и изготовлен он в Специальной астрофизической обсерватории РАН, а установлен на телескопе АЗТ-33ИК сотрудниками ИСЗФ СО РАН.

— Задача состояла в том, чтобы сделать прибор «максимально прозрачным»: мы должны были терять как можно меньше света за время прохождения луча через линзы. Таким образом, за заданное время экспозиции мы регистрируем максимально возможное количество фотонов, так что даже на небольшом 1,6-метровом телескопе можем получать соответствующие спектры довольно слабых объектов, — объясняет старший научный сотрудник отдела астрофизики высоких энергий ИКИ РАН кандидат физико-математических наук Родион Анатольевич Буренин.

 Помимо чрезвычайно прозрачной линзы прибор оснастили высокоэффективной ПЗС-матрицей. ПЗС — приборы с зарядовой связью — используются не только в специальном научном оборудовании, но и в обычных зеркальных цифровых фотоаппаратах: именно они преобразуют фотоны, попавшие в объектив, в электрические заряды, которые затем формируют изображение на экране камеры.

 — В этом приборе стоит матрица последнего поколения, у которой высокая чувствительность в инфракрасном диапазоне — выше, чем у обычных, — говорит Родион Буренин. —  Кроме того, у нас были ограничения по весу. Поэтому мы сделали спектрограф, позволивший нам облегчить оптику, использовали более легкие зеркала с серебряным покрытием и высокими отражающими свойствами. Сама конструкция телескопа тоже интересна и оптимально подошла для наших задач: под зеркалом АЗТ-ЗЗИК располагаются оптические столы, где можно разместить разные приборы, а затем, поворачивая косое зеркало между этими приборами, легко переключаться. 

— В России не так много инструментов для астрономических наблюдений, — говорит заведующий лабораторией инфракрасных методов в астрофизике ИСЗФ СО РАН кандидат физико-математических наук Максим Викторович Еселевич.

— У ИКИ РАН большой проект, они искали поддержку в различных местах, и нам удалось организовать с ними сотрудничество. Своих работ по наблюдению далеких астрофизических явлений у нас проводится не так много, например, мы делаем мониторинг оптических послесвечений гамма-всплесков, но в основном занимаемся наблюдениями околоземного космического пространства: космического мусора, астероидов. Участвуя в совместном проекте, мы рассчитывали расширить круг наших задач, — рассказывает Максим Еселевич.  

Карта неба в рентгеновском диапазоне 

— Мы надеемся, что в конце следующего года будет запущен «Спектр-Рентген-Гамма» и появится возможность сделать обзор всего неба в рентгеновском диапазоне на полтора-два порядка чувствительнее, чем сейчас. Это качественный скачок, как если бы раньше у вас был метровый телескоп, а потом появился шестиметровый, — объясняет Родион Буренин.  

 — Можно еще иначе сказать, — дополняет Сергей Сазонов. — Данные XMM-Newton в рентгеновском диапазоне есть по одному проценту неба, а СРГ отсканирует всё небо, и по чувствительности данные будут аналогичные. Информация станет применима для поиска большего количества квазаров. Мы ожидаем найти миллионы активных в рентгене ядер галактик. Дальше их можно будет изучать в оптическом диапазоне, потому что при проверке не все из них окажутся квазарами.

 Подготовили Юлия Позднякова, Алёна Литвиненко

Взято с сайта www.sbras.info

Что может рассказать один юный квазар? 2017-06-30T15:01:24+00:00

Астрономы из России открыли одну из самых далеких черных дыр

2017-06-30T17:14:53+00:00

МОСКВА, 7 окт – РИА Новости. Астрономы из Института космических исследований РАН открыли один из самых далеких квазаров, активных сверхмассивных черных дыр в центрах далеких галактик, возникший почти сразу после Большого Взрыва и рождения первых галактик Вселенной, говорится в статье, принятой к печати в Письма в Астрономический журнал.

1478722643

«Мы провели спектроскопическую проверку двух десятков рентгеновских источников, найденных недавно. Один из них, 3XMM J125329.4+305539, оказался очень далеким — он расположен на красном смещении 5,08, что соответствует возрасту Вселенной чуть более одного миллиарда лет. Это не самый далекий квазар, известный в настоящее время, но он, возможно, самый далекий из тех, что были обнаружены именно в рентгеновском диапазоне», — рассказывает Сергей Сазонов из Института космических исследований РАН в Москве.

Квазары представляют собой сверхмассивные черные дыры в центрах далеких галактик, которые активно поглощают материю и «выплевывают» часть ее в виде узких пучков материи, разогнанных до околосветовых скоростей, и выделяемых ими потоков энергии, чья светимость в десятки и сотни миллионов раз превышает яркость Солнца.

Как сегодня считают астрономы, квазары были наиболее активны примерно 10 миллиардов лет назад, когда во Вселенной активно формировались первые крупные скопления галактик. Детали этого процесса до сих пор остаются неизвестными для ученых, и поэтому они активно следят за квазарами, чье излучение может «подсветить» те клубы газа, из которых рождались галактики и раскрыть их тайны.

Сазонов и его коллеги по институту, а также ученые из Саянской солнечной обсерватории, добавили в число сверхдалеких и древних квазаров еще один объект, изучая источники рентгеновского излучения, найденные различными орбитальными и наземными телескопами.

Как отмечают ученые, число далеких квазаров, найденных в рентгеновском диапазоне, крайне мало – их общее количество не превышает двух сотен ядер галактик, и российские астрономы пытались расширить его, изучая спектры рентгеновских объектов, похожих на квазары.

Для этого Сазонов и его коллеги проанализировали каталоги объектов, за которыми наблюдали телескопы XMM-Newton, наземные обсерватории в рамках Слоановского обзора неба, и инфракрасного телескопа WISE. Комбинация оптических, рентгеновских и инфракрасных снимков помогла им отсеять рентгеновские объекты, не способные быть квазарами в принципе, и отобрать для наблюдений только самые «подозрительные» источники рентгена.

В итоге ученым удалось получить самую большую на сегодня выборку рентгеновских квазаров и кандидатов в квазары — в каталог вошли 903 источника, из них более 350 новых кандидатов, для которых были определены красные смещения при помощи спектрографа АДАМ, установленного на 1,6 метровый телескоп АЗТ-33ИК Саянской обсерватории.

Этот прибор, как передает пресс-служба ИКИ, является результатом совместной работы трех институтов Российской академии наук. По словам Родиона Буренина, сотрудника института, он будет использоваться для наблюдения за теми рентгеновскими источниками, которые будут открыты при помощи российской космической обсерватории «Спектр-РГ», запуск которой намечен на сентябрь следующего года.

Как считают ученые, открытие столь далекого квазара говорит о том, что уже сейчас можно значительно увеличить число известных рентгеновских квазаров, используя ранее собранные данные. Запуск «Спектра-РГ», в свою очередь, позволит обнаружить все наиболее яркие квазары в наблюдаемой части Вселенной, заключают ученые.

Астрономы из России открыли одну из самых далеких черных дыр 2017-06-30T17:14:53+00:00

Карлики взорвались открытием

2017-06-30T17:15:28+00:00

screenshot-2016-09-17-19-14-10

(Газета.РУ, 28.08.2014) Выдающийся успех российских астрономов: оперативные наблюдения сверхновой SN2014J, вспыхнувшей в январе 2014 года, позволили подтвердить теоретическую концепцию о том, что такое сверхновые типа Ia. Зафиксированное гамма-излучение кобальта-56 убедительно показывает, что сверхновые — это гигантские термоядерные взрывы белых карликов, сверхплотных остатков звезд.

Карлики взорвались открытием 2017-06-30T17:15:28+00:00

Российские астрофизики выявили три разрушенных черными дырами звезды

2017-06-30T17:16:08+00:00

(Взгляд, 5 августа 2014) Исследователи из Института космических исследований РАН и МФТИ открыли три возможных события приливного разрушения звезд сверхмассивными черными дырами в центрах галактик, об этом сообщается в статье Ильдара Хабибуллина,Сергея Сазонова и Рашида Сюняева.

Российские астрофизики выявили три разрушенных черными дырами звезды 2017-06-30T17:16:08+00:00

Столетие академика Зельдовича отметят крупной конференцией в Москве

2017-06-30T17:16:54+00:00

(Газета.Ru 23.08.2013В честь столетия со дня рождения академика Якова Зельдовича отдел астрофизики высоких энергий Института космических исследований Российской академии наук (ИКИ РАН) планирует провести международную конференцию, посвященную огромному вкладу Зельдовича в астрофизику.

Столетие академика Зельдовича отметят крупной конференцией в Москве 2017-06-30T17:16:54+00:00

ЧЕРНЫЕ ДЫРЫ. БЕЛЫЕ ПЯТНА

2017-06-30T17:17:49+00:00

Россия «К» о работе Международной астрофизической космической лаборатории гамма-лучей «Интеграл» на околоземной орбите.

ЧЕРНЫЕ ДЫРЫ. БЕЛЫЕ ПЯТНА 2017-06-30T17:17:49+00:00