20 09, 2017

Вспышки рентгеновского излучения сверхмассивной черной дыры и свойства молекулярных облаков

2017-10-24T15:26:52+00:00 20 09 2017|Categories: Публикации|Tags: , , |

Е.Чуразов, И.Хабибуллин, Р.Сюняев

Сверхмассивная черная дыра в центре нашей Галактики, ассоциируемая с радиоисточником Sgr A*,  могла бы быть ярчайшим рентгеновским источником на небе, однако, наблюдаемый поток излучения от нее в текущую эпоху невелик и даже во время вспышек соответствует лишь миллиардной доле эддингтоновской светимости черной дыры массой 4 миллиона масс Солнца.  Тем не менее, существуют указания на то, что гораздо более яркие вспышки имели место в ее недалеком прошлом. В частности, такой вывод можно сделать на основе рентгеновского излучения, приходящего от массивных молекулярных облаков вблизи Галактического центра, которое является «эхом»  вспышки рентгеновского излучения от черной дыры, наблюдаемом с задержкой около сотни лет, вызванной конечной скоростью распространения света между источником и «отражателем». Интенсивность отраженного сигнала при этом просто пропорциональна яркости родительской вспышки, так что наблюдения отраженного сигнала позволяют восстановить историю активности Sgr A* на масштабе нескольких сотен лет. Одна из основных трудностей такого подхода заключается в плохом знании взаимного расположения черной дыры и молекулярного облака, так как оценки расстояния до них вдоль луча зрения подвержены большой неопределенности.  В недавней серии статей (Чуразов, Хабибуллин, Сюняев, Понти 2017a,b,c), обсуждаются новые методы, позволяющие избавиться от этой неопределенности.

Главная идея базируется на наблюдаемой переменности отраженного излучения — его интенсивность заметно меняется на масштабе нескольких лет, что однозначно указывает на то, что и изначальная вспышка черной дыры  должна была быть достаточно короткой. Как следствие, отражение происходит лишь в тонком слое молекулярного газа, толщина которого не превышает несколько световых лет. Скорость распространения такого «фронта облучения» вдоль луча зрения может быть точно предсказана, и она зависит исключительно от времени, прошедшего с момента вспышки, и от расстояния от источника до облака. Вблизи источника скорость составляет половину скорости света, а на больших проекционных расстояниях неограниченно возрастает. Чтобы определить ее из данных наблюдений, достаточно предположить, что на масштабах заметно меньших, чем размер облака, флуктуации плотности имеют изотропную структуру. Другими словами, характерные размеры неоднородностей плотности одинаковы вдоль луча зрения и в направлении, перпендикулярном ему. Анализ существующих данных для наиболее яркого облака показал, что эта скорость составляет 70% от скорости света. Данное значение сразу показывает, что, с учетом положения облака на небе относительно источника Sgr А*, время, прошедшее с момента вспышки, составляет 110 лет.

Полный поток энергии, излученный сверхмассивной черной дырой в результате такой вспышки может быт оценен, если предположить, что плотность рассеивающего газа известна из наблюдений молекулярных линий. Подобные рассуждения приводят к сравнительно небольшим (для сверхмассивной черной дыры) значениям энергии порядка 1047–1048 эрг. Подобную энергию сверхмассивная черная дыра, излучающая на эддингтоновском пределе, могла бы излучить за несколько часов. Полная масса вещества, «проглоченная» черной дырой во время вспышки, сравнима с массой планеты, если аккреционный поток излучает порядка 5-10% от гравитационной энергии падающего вещества.

Уточнив таким образом параметры вспышки и измерив расстояние от Sgr A* до молекулярного облака становится возможным использовать эту информацию для диагностики структуры молекулярных облаков. Например, можно восстановить трехмерное распределение молекулярного газа на больших масштабах (см. Рис.1) или измерить статистические свойства флуктуаций плотности газа вплоть до масштабов около 0.1 пк (см. Рис.2). Кроме этого, задавшись конкретной моделью крупномасштабного распределения молекулярного газа вблизи центра Галактики, оказывается возможным получить предсказания распространения «эха» этой вспышки в ближайшие несколько сотен лет (см. Рис. 3), сравнение которой с реальными наблюдениями, в том числе поляриметрическими, позволит в будущем восстановить реальную крупномасштабную карту центральной молекулярной зоны. Наблюдения же будущими поколениями рентгеновских обсерваторий, оснащенных болометрами, позволят исследовать не только плотности, но и скорости молекулярного газа, что значительно дополнит картину как сверхзвуковых турбулентных движений внутри отдельных облаков, так и их орбитального движения в гравитационном потенциале центра Галактики.

Churazov E., Khabibullin I., Sunyaev R., Ponti G. «Not that long time ago in the nearest galaxy: 3D slice of molecular gas revealed by a 110 yr old flare of Sgr A*», 2017,  Monthly Notices of the Royal Astronomical Society,  465,  45. http://adsabs.harvard.edu/abs/2017MNRAS.465…45C

Churazov E., Khabibullin I., Ponti G., Sunyaev R. «Polarization and long-term variability of Sgr A* X-ray echo», 2017,  Monthly Notices of the Royal Astronomical Society,  468,  165. http://adsabs.harvard.edu/abs/2017MNRAS.468..165C

Churazov E., Khabibullin I., Sunyaev R., Ponti G. «Can Sgr A* flares reveal the molecular gas density PDF?», 2017,  Monthly Notices of the Royal Astronomical Society,  471,  3293, http://adsabs.harvard.edu/abs/2017MNRAS.471.3293C

Трехмерное распределение плотности молекулярного газа, полученное на основе рентгеновских наблюдений.

Рис.1 Трехмерное распределение плотности молекулярного газа, полученное на основе рентгеновских наблюдений.

Доля объема, занятая газом с данной плотностью (на масштабах порядка 0.2 пк). Существующие данные пока не позволяют надежно измерить форму этого распределения, но есть надежда провести необходимые наблюдения в ближайшем будущем.

Рис.2 Доля объема, занятая газом с данной плотностью (на масштабах порядка 0.2 пк). Существующие данные пока не позволяют надежно измерить форму этого распределения, но есть надежда провести необходимые наблюдения в ближайшем будущем.

Рис.3 Моделирование распространения вспышки по молекулярному газу. По мере распространения «фронта облучения» одни облака «гаснут», тогда как другие становятся яркими. В рамках этой модели рентгеновское излучение остается видимым в течение 500 лет после вспышки.

31 12, 2016

Функция светимости и совокупный спектр излучения ярких массивных рентгеновских двойных систем, рентгеновский нагрев ранней Вселенной

2017-09-28T18:29:59+00:00 31 12 2016|Categories: Публикации|Tags: , |

С.Ю. Сазонов, И.И. Хабибуллин

→ Общая формулировка научной проблемы и ее актуальность

Тема реионизации Вселенной чрезвычайно актуальна. Остается открытым ключевой вопрос: какие астрофизические объекты и физические механизмы были ответственны за реионизацию Вселенной? В последнее время активно обсуждается гипотеза, что еще до реионизации ультрафиолетовым излучением галактик и квазаров первичная межгалактическая среда во Вселенной могла быть заметно разогрета излучением первых рентгеновских источников. Естественным кандидатом на роль таких источников в ранней Вселенной являются массивные рентгеновские двойные системы (МРД). Поэтому тема раннего нагрева Вселенной оказывается неразрывно связана с исследованием популяционных свойств МРД в современную эпоху.

→ Конкретная решаемая в работе задача и ее значение

построение функции светимости и суммарного спектра рентгеновского излучения МРД высокой светимости (>10^38 эрг/с) в современную эпоху, оценка нагрева ранней Вселенной излучением таких источников в первых галактиках.

→ Используемый подход, его новизна и оригинальность

Использовалась выборка 27 близких галактик, для которых имеются карты атомарного и молекулярного межзвездного газа, а также темпа звездообразования. На основе каталога источников, обнаруженных телескопом Чандра в этих галактиках, была составлена выборка из 200 вероятных МРД со светимостью выше 10^38 эрг/с, исследованы рентгеновские спектры этих источников. На основе этой выборки была измерена функция рентгеновской светимости МРД и построен рентгеновский спектр совокупного излучения популяции МРД в современную эпоху. При этом были учтены эффекты селекции, связанные с разнообразием спектров ярких МРД и поглощением излучения в межзвездной среде родительских галактик. Такой самосогласованный подход никогда ранее не использовался при изучении популяционных свойств МРД.

На основе измеренных функции светимости и суммарного спектра МРД, используя зависимость интегрального темпа звездообразования от красного смещения на z=6-10, основанную на наблюдениях космического телескопа им. Хаббла, и принимая во внимание, что в ранней Вселенной удельная светимость МРД могла быть повышена из-за низкой металличности первых галактик, был рассчитан нагрев ранней Вселенной мягким рентгеновским излучением МРД. В предыдущих работах использовались менее обоснованные оценки светимостей и спектров рентгеновских источников в первых галактиках.

→ Полученные результаты и их значимость

Впервые измерена истинная (поправленная за поглощение и эффекты селекции), отнесенная к темпу звездообразования функция светимости МРД в современную эпоху. В диапазоне светимостей от 10^38 до 3 10^40 эрг/с она может быть описана степенным законом: dN/dlog L=2.0(L/10^39 эрг/c)^(-0.6)/(M_Sun/год). Показано, что вклады жестких, мягких и сверхмягких источников в функцию светимости находятся в пропорции 2:1:1. Также впервые измерена функция светимости МРД в мягком рентгеновском диапазоне 0.25-2 кэВ и показано, что жесткие, мягкие и сверхмягкие источники вносят в нее примерно равный вклад. Суммарная мягкая рентгеновская удельная светимость МРД в современную эпоху составляет 5 10^39 эрг/с/(M_Sun/год). Самосогласованный учет эффектов поглощения и разнообразия рентгеновских спектров никогда ранее не осуществлялся при изучении популяционных свойств МРД.

Впервые измерен поправленный за поглощение и эффекты селекции суммарный спектр рентгеновского излучения ярких МРД в современную эпоху. В диапазоне энергий 0.25-8 кэВ он может быть описан степенным законом с наклоном 2.1. Основной вклад в совокупное излучение дают ультраяркие рентгеновские источники со светимостью выше 10^39 эрг/с. Жесткие источники доминируют на энергиях выше 2 кэВ, а мягкие и сверхмягкие — на более низких энергиях. Полученный спектр дает важные ограничения на модели около- и сверх-критической аккреции вещества на черные дыры и нейтронные звезды.

Используя измеренные функцию светимости и суммарный спектр ярких МРД, оценен фотонагрев ранней Вселенной мягким рентгеновским излучением таких систем. Показано, что излучение ультраярких и сверхмягких ультраярких  рентгеновских источников могло существенно нагреть первичную  межгалактическую среду уже к z=10, если удельная рентгеновская светимость молодого звездного населения в ранней Вселенной была, из-за низкой металличности первых галактик, на порядок выше, чем в современную эпоху. Это делает возможным наблюдение нейтрального водорода в линии 21 см в излучении на z<10. Хотя расчеты рентгеновского нагрева Вселенной ранее проводились неоднократно, в наших расчетах были впервые использованы реально измеренные спектры и функция светимости МРД в мягком рентгеновском дипазоне. 

→ Ссылки:

  1. «Bright end of the luminosity function of high-mass X-ray binaries: contribution of hard, soft and supersoft sources» Sazonov S., Khabibullin I. Monthly Notices of the Royal Astronomical Society, 2017, vol. 466, p. 1019-1051
  2. «The intrinsic collective spectrum of luminous high-mass X-ray binaries» Sazonov S., Khabibullin I. Monthly Notices of the Royal Astronomical Society, 2017, vol. 468, p. 2249-2255
  3. «Подогрев ранней Вселенной излучением массивных рентгеновских двойных систем» Сазонов С.Ю., Хабибуллин И.И. Письма в Астрономический журнал, 2017, том 43, стр. 243-253
25 12, 2015

Хабибуллин Ильдар Инзилович

2017-06-30T15:14:33+00:00 25 12 2015|Categories: Диссертации, к.ф.-м.н.|Tags: |

Внегалактические транзиентные источники в планируемом обзоре неба обсерватории Спектр-РГ и архивных данных ROSAT и XMM-Newton. Моделирование рентгеновского излучения релятивистских струй. 

Текст диссертации | Информация на сайте ИКИ

28 09, 2015

Представлены доклады по диссертациям 28 сентября 2015

2017-11-01T18:42:48+00:00 28 09 2015|Categories: Семинары отдела|Tags: , , , , |

1. Диссертация Натальи Сергеевны Лысковой «Методы определения масс эллиптических галактик, применимые для больших обзоров» на соискание ученой степени кандидата физико-математических наук по специальности 01.03.02 Астрофизика и звездная астрономия. Работа выполнена в отделе Астрофизики высоких энергий ИКИ РАН. Научный руководитель: д.ф.м.н. Евгений Михайлович Чуразов.
2. Диссертация Артема Владимировича Просветова «Переменность рентгеновского излучения и широкополосные спектры аккрецирующих черных дыр в маломассивных двойных системах» на соискание ученой степени кандидата физико-математических наук по специальности 01.03.02 Астрофизика и звездная астрономия. Работа выполнена в отделе Астрофизики высоких энергий ИКИ РАН. Научный руководитель: д.ф.м.н. Сергей Андреевич Гребенев.
3. Диссертация Ильдара Инзиловича Хабибуллина «Внегалактические транзиентные источники в планируемом обзоре неба обсерватории Спектр-РГ и архивных данных ROSAT и XMM-Newton. Моделирование рентгеновского излучения релятивистских струй» на соискание ученой степени кандидата физико-математических наук по специальности 01.03.02 Астрофизика и звездная астрономия. Работа выполнена в отделе Астрофизики высоких энергий ИКИ РАН. Научный руководитель: Сергей Юрьевич Сазонов.

5 08, 2014

Российские астрофизики выявили три разрушенных черными дырами звезды

2017-06-30T17:16:08+00:00 05 08 2014|Categories: Пресса о нас|Tags: , , , |

(Взгляд, 5 августа 2014) Исследователи из Института космических исследований РАН и МФТИ открыли три возможных события приливного разрушения звезд сверхмассивными черными дырами в центрах галактик, об этом сообщается в статье Ильдара Хабибуллина,Сергея Сазонова и Рашида Сюняева.